分析 (1)利用三角恒等变换化简函数f(x)的解析式,再由题意结合正弦函数的图象和性质求得ω的值,可得f(x)的解析式,从而求得函数f(x)的图象的对称轴方程.
(2)由条件求得sin(2x0+$\frac{π}{3}$)=$\frac{4}{5}$,再利用2x0+$\frac{π}{3}$的范围求得cos(2x0+$\frac{π}{3}$),利用两角和的正弦公式,求得f(x0+$\frac{π}{6}$)=sin[(2x0+$\frac{π}{3}$)+$\frac{π}{3}$]的值.
解答 解:(1)f(x)=3cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$=3•$\frac{1+cosωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$=$\sqrt{3}$•($\frac{\sqrt{3}}{2}$cosωx+$\frac{1}{2}$sinωx)=$\sqrt{3}$sin(ωx+$\frac{π}{3}$) 在一个周期内的图象,
点A为图象的最高点,B,C为图象与x轴的交点,且三角形ABC的面积为$\frac{1}{2}$•$\frac{T}{2}$•$\sqrt{3}$=$\frac{\sqrt{3}}{4}$•$\frac{2π}{ω}$=$\frac{\sqrt{3}}{4}$π,∴ω=2,f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$).
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,故函数f(x)的图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
(2)若f(x0)=$\sqrt{3}$sin(2x0+$\frac{π}{3}$)=$\frac{4\sqrt{3}}{5}$,∴sin(2x0+$\frac{π}{3}$)=$\frac{4}{5}$.
∵x0∈($\frac{π}{12}$,$\frac{π}{3}$),∴2x0+$\frac{π}{3}$∈($\frac{π}{2}$,π),∴cos(2x0+$\frac{π}{3}$)=-$\frac{3}{5}$,
∴f(x0+$\frac{π}{6}$)=sin(2x0+$\frac{2π}{3}$)=sin[(2x0+$\frac{π}{3}$)+$\frac{π}{3}$]=sin(2x0+$\frac{π}{3}$)cos$\frac{π}{3}$+cos(2x0+$\frac{π}{3}$)sin$\frac{π}{3}$
=$\frac{4}{5}•\frac{1}{2}$+(-$\frac{3}{5}$)•$\frac{\sqrt{3}}{2}$=$\frac{4-3\sqrt{3}}{10}$.
点评 本题主要考查三角恒等变换,正弦函数的图象和性质,同角三角的基本关系,两角和的正弦公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{1}{4},2}]$ | B. | $[{-\frac{1}{4},2})$ | C. | $[{-2,\frac{1}{4}})$ | D. | $({-2,\frac{1}{4}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x=y,则$\frac{1}{x}$=$\frac{1}{y}$ | B. | 若x2=1,则x=1 | C. | 若$\sqrt{x}$=$\sqrt{y}$,则x=y | D. | 若x<y,则x2<y2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个白球2个红球 | B. | 2个白球1个红球 | C. | 3个都是红球 | D. | 至少有一个红球 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | π | C. | $\frac{4π}{3}$ | D. | $\frac{5π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{8}{3}$ | D. | -$\frac{8}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com