精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2sin(2x-$\frac{π}{4}$).
(1)求函数的单调区间;
(2)若x∈[0,$\frac{3π}{4}$],求f(x)的取值范围.

分析 (1)由条件利用正弦函数的单调性,求得函数的单调区间.
(2)由条件利用正弦函数的定义域和值域求得f(x)的取值范围.

解答 解:(1)对于函数f(x)=2sin(2x-$\frac{π}{4}$),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,
求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,可得函数的增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,
可得函数的减区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.
(2)若x∈[0,$\frac{3π}{4}$],则2x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{5π}{4}$],故f(x)∈[-$\sqrt{2}$,1].

点评 本题主要考查正弦函数的单调性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;
(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取1名学生组成一个实验组,求所抽取的2名同学中恰好为一名男生和一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$,$\overrightarrow{b}$如图所示,求它们的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=cos(x-$\frac{π}{3}$),则该函数的单调增区间是[2kπ+$\frac{4π}{3}$,2kπ+$\frac{7π}{3}$],k∈Z,该函数图象的对称中心坐标是(kπ+$\frac{5π}{6}$,0),k∈Z,对称轴方程是x=kπ+$\frac{π}{3}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正方体ABCD-A1B1C1D1中,点M是AB的中点,求DB1与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义函数f(x)=2|x+5|-|x+1|,数列a1,a2,a3…满足an+1=f(an),n∈N*.若要使a1,a2,…an,…成等差数列.则a1的取值范围为(  )
A.a1≥-5B.a1≥-1C.a1≥-1或a1≤-5D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,点M是AD的中点,点P是BM的中点,点Q在线段AC上,且AQ=3QC,取BD的中点O,以点O为原点,OD,OP所在直线为y,z轴,建立空间直角坐标系Oxyz
求证:PQ∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且F1,F2分别是椭圆C的左右焦点,点M(0,4),$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=13.
(1)求椭圆C的方程;
(2)过A(0,1)作直线l与椭圆的另一交点为B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{5}$,求椭圆上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(1,-1),则2$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.10B.(5,5)C.(5,6)D.(5,7)

查看答案和解析>>

同步练习册答案