1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒF1£¬F2·Ö±ðÊÇÍÖÔ²CµÄ×óÓÒ½¹µã£¬µãM£¨0£¬4£©£¬$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=13£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýA£¨0£¬1£©×÷Ö±ÏßlÓëÍÖÔ²µÄÁíÒ»½»µãΪB£¬Èô$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{5}$£¬ÇóÍÖÔ²Éϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓõãM£¨0£¬4£©£¬$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=13£¬Çó³öc£¬ÀûÓÃÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Çó³öa£¬¿ÉµÃb£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÏÈÇó³öÖ±ÏßlµÄ·½³Ì£¬ÔÙÀûÓòÎÊý·¨Çó³öÍÖÔ²Éϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©¡ßµãM£¨0£¬4£©£¬$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=13£¬
¡à£¨-c£¬-4£©•£¨c£¬-4£©=13£¬
¡àc=$\sqrt{3}$£¬
¡ße=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àa=2£¬
¡àb=1£¬
¡àÍÖÔ²CµÄ·½³Ì$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬´úÈë$\frac{{x}^{2}}{4}+{y}^{2}$=1£¬ÕûÀí¿ÉµÃ£¨1+4k2£©x2+8kx=0
ÉèB£¨x1£¬y1£©£¬Ôòx1=-$\frac{8k}{1+4{k}^{2}}$
¡ß$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{5}$£¬
¡ày1=-$\frac{3}{5}$£¬
¡àk¡Á£¨-$\frac{8k}{1+4{k}^{2}}$£©+1=-$\frac{3}{5}$£¬
¡àk=¡À1
È¡k=1£¬Ôòx-y+1=0£¬
ÉèÍÖÔ²Éϵĵ㣨x£¬y£©£¬Ôòx=2cos¦È£¬y=sin¦È
ÍÖÔ²Éϵĵ㵽ֱÏßlµÄ¾àÀëd=$\frac{|x-y+1|}{\sqrt{2}}$=$\frac{|\sqrt{5}cos£¨¦È+¦Á£©+1|}{\sqrt{2}}$£¬
¡àÍÖÔ²Éϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óֵΪ$\frac{\sqrt{5}+1}{\sqrt{2}}$=$\frac{\sqrt{10}+\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌÓëÐÔÖÊ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Çóº¯Êýy=$\frac{1}{{x}^{2}-3x+2}$µÄ×î´óÖµ»ò×îСֵ£®
½â£ºÓÉy=x2-3x+2=£¨x-$\frac{3}{2}$£©2-$\frac{1}{4}$£¬µÃµ½x=$\frac{3}{2}$ʱx-3x+2ÓÐ×îСֵ-$\frac{1}{4}$£¬ËùÒÔy=$\frac{1}{{x}^{2}-3x+2}$ÓÐ×î´óÖµ-4£®
ÇëÅжÏÒÔÉϽⷨµÄÕýÎó²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨2x-$\frac{¦Ð}{4}$£©£®
£¨1£©Çóº¯ÊýµÄµ¥µ÷Çø¼ä£»
£¨2£©Èôx¡Ê[0£¬$\frac{3¦Ð}{4}$]£¬Çóf£¨x£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®log264=6µÄÖ¸ÊýÐÎʽΪ64=26£¬34=81µÄ¶ÔÊýÐÎʽΪ4=log381£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÈçÒ»ÄêÓÐ365Ì죬¹À¼Æ¼×¡¢ÒÒÁ½ÈËÉúÈÕÔÚͬһÌìµÄ¸ÅÂÊÊÇ$\frac{1}{365}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈôÅ×ÎïÏßy2=2mx£¨m£¾0£©Éϵĵ㣬M£¨3£¬y0£©µ½½¹µãµÄ¾àÀëÊÇ5£¬Ôòy0µÈÓÚ£¨¡¡¡¡£©
A£®2$\sqrt{3}$B£®6C£®¡À2$\sqrt{6}$D£®¡À$\sqrt{15}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªf£¨x£©µÄÒ»¸öÔ­º¯ÊýΪe${\;}^{-{x}^{2}}$£¬Çó${¡Ò}_{\;}^{\;}$xf¡ä£¨x£©dx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªA£¨4£¬-3£©¡¢B£¨2£¬-1£©ºÍÖ±Ïß1£º4x+y-2=0£¬ÔÚÖ±ÏßlÉÏÇóÒ»µãPʹ|PA|=|PB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò£º£¨$\frac{cos¦Á}{1+sin¦Á}$+$\frac{1+sin¦Á}{cos¦Á}$£©•sin¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸