精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x3-6x2+9x,则f(x)在闭区间[-1,5]上的最小值为-16,最大值为20.

分析 结合三次函数的特征可知,该函数在区间[-1,5]上处处可导且连续,因此只需求出该函数的极值点处函数值,以及函数的端点值,大中取大,小中取小即可.

解答 解:由已知得f(x)=x3-6x2+9x,
所以f′(x)=3x2-12x+9,令f′(x)=0,得x=1或x=3;
因为该函数在[-1,5]上处处可导,
且f(-1)=-16;f(1)=4;f(4)=4;f(5)=20,
所以最小值为-16,最大值为20.
故答案为:-16;20.

点评 本题考查了可导函数在其连续的闭区间上函数最值的求法,要注意利用性质求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.曲线y=lnx在x=e处的切线斜率为(  )
A.-eB.eC.-$\frac{1}{e}$D.$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-a(1-$\frac{1}{x}$),a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为0.
(i)求实数a的值;
(ii)已知数列{an}满足:a1=1,an+1=f(an)+2,记[x]表示不大于x的最大整数,求证:n>1时[an]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体ABCD-A1B1C1D1中,M,N分别是A1B1,BB1的中点,求异面直线AM与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z满足|z|=1,则|z-3-4i|的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}、{bn}都是项数相同的等比数列,判断下列数列是等比数列是①②③⑦⑧
①{an•bn};②{an2};③{an•an+1};④{k•an};⑤{an+bn};⑥{an+an+1};⑦{$\frac{1}{{a}_{n}}$};⑧{$\frac{{a}_{n}}{{b}_{n}}$};⑨{an+2};{an+2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x(ex-e-x)-(2x-1)(e2x-1-e1-2x),则满足f(x)>0的实数x的取值范围为($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的下顶点为B,右焦点为F,直线BF与椭圆E的另一个交点为A,$\overrightarrow{BF}=3\overrightarrow{FA}$.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若点P为椭圆上的一个动点,且△PAB面积的最大值为$\frac{{2\sqrt{3}+2}}{3}$,求椭圆E的方程.

查看答案和解析>>

同步练习册答案