| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
分析 由MG平行于x轴得yG=yM=a,则yP=3yG=3a,通过${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$•2c•3a=$\frac{1}{2}$•(|PF1|+|PF2|+2c)•a,又|PF1|-|PF2|=2a,求出P(2a,3a),代入椭圆方程转化求解离心率即可.
解答 解:由MG平行于x轴得yG=yM=a,则yP=3yG=3a,
所以${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$•2c•3a=$\frac{1}{2}$•(|PF1|+|PF2|+2c)•a,又|PF1|-|PF2|=2a,
则|PF1|=2c+a,|PF2|=2c-a.由|PF1|2-(xP+c)2=|PF2|2-(c-xP)2得xP=2a,
因此P(2a,3a),代入椭圆方程得$\frac{(2a)^{2}}{{a}^{2}}-\frac{({3a)}^{2}}{{b}^{2}}$=1,
即b=$\sqrt{3}$a,则e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=2.
故选:C.
点评 本题考查直线与双曲线的位置关系的应用,双曲线的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $\frac{7}{8}$ | D. | $-\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2b2≤$\frac{1}{16}$ | B. | a2+b2≥$\frac{1}{2}$ | C. | (1+$\frac{1}{a}$)(1+$\frac{1}{b}$)≥9 | D. | $\frac{1}{a}$+$\frac{1}{b}$≥4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com