精英家教网 > 高中数学 > 题目详情

【题目】已知A(1,2,3),B(2,1,2),C(1,1,2),O为坐标原点,点D在直线OC上运动,则当·取最小值时,点D的坐标为(  )

A. B.

C. D.

【答案】C

【解析】

=t=(t,t,2t),t0,则=6t2﹣16t+10,由此利用配方法能求出取最

小值时点D的坐标.

=t=(t,t,2t),t0,

A(1,2,3)、B(2,1,2)、C(1,1,2),O为坐标原点,点D在直线OC上运动,

=(1﹣t,2﹣t,3﹣2t),=(2﹣t,1﹣t,2﹣2t),

=(1﹣t)×(2﹣t)+(2﹣t)×(1﹣t)+(3﹣2t)(2﹣2t)

=6t2﹣16t+10

=6(t﹣2+

t=时,取最小值,

此时D().

故答案为:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系xOy中,圆C的参数方程为 (θ为参数,r>0).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 ρsin(θ+ )+1=0.
(1)求圆C的圆心的极坐标;
(2)当圆C与直线l有公共点时,求r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若lg(3x)+lg y=lg(x+y+1),则xy的最小值为(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

先根据对称的运算性质化简得到3xy=x+y+1,再根据基本不等式即可求出答案.

∵lg(3x)+lgy=lg(3xy)=lg(x+y+1),x>0,y>0,

∴3xy=x+y+1,

∴3xy≥3,当且仅当x=y=1时取等号,

即xy≥1,

xy的最小值是1,

故选:A

【点睛】

在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误

型】单选题
束】
12

【题目】已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的程序图的算法思路中是一种古老而有效的算法﹣﹣辗转相除法,执行改程序框图,若输入的m,n的值分别为30,42,则输出的m=(  )

A.0
B.2
C.3
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=2an+1.
(1)求数列{an}的通项公式;
(2)令bn=n(an+1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为(  )

A.792
B.693
C.594
D.495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,AB=5 , ∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的长;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣alnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)当a>0时,若f(x)的最小值为1,求a的值;
(3)设g(x)=f(x)﹣2x,若g(x)在[]有两个极值点x1 , x2(x1<x2),证明:g(x1)﹣g(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+)(x∈R)的图象上所有点的纵坐标不变横坐标缩小到原来的 , 再把图象上各点向左平移个单位长度,则所得的图象的解析式为( )
A.y=sin(2x+
B.y=sin(x+
C.y=sin(2x+
D.y=sin(x+

查看答案和解析>>

同步练习册答案