精英家教网 > 高中数学 > 题目详情
1.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-2c=0.
(1)求A.
(2)若等差数列{an}的公差不为零,且a1cosA=-1,且a2、a4、a8成等比数列,设{an}的前n项和为Tn,求数列{$\frac{1}{{T}_{n}}$}的前n项和Sn

分析 (1)利用正弦定理对acosC+$\sqrt{3}$asinC-b-2c=0变形、结合三角形内角和定理可知$\sqrt{3}$sinA-cosA=2,进而利用辅助角公式可得结论;
(2)通过(1)可知a1=2,利用a2、a4、a8成等比数列可知数列{an}是首项、公差均为2的等差数列,利用等差数列的求和公式可知Tn=n(n+1),进而利用裂项相消法计算即得结论.

解答 解:(1)因为acosC+$\sqrt{3}$asinC-b-2c=0,
所以sinAcosC+$\sqrt{3}$sinAsinC-sinB-2sinC=0,
所以sinAcosC+$\sqrt{3}$sinAsinC=sinB+2sinC=sin(A+C)+2sinC=sinAcosC+sinCcosA+2sinC,
又因为sinC≠0,
所以$\sqrt{3}$sinA-cosA=2,
∴sin(A-30°)=1,
∴A-30°=90°,
∴A=120°;
(2)由(1)可知cosA=cos120°=-$\frac{1}{2}$,
又因为a1cosA=-1,
所以a1=2,记等差数列{an}的公差为d(d≠0),
则由a2、a4、a8成等比数列可知(2+3d)2=(2+d)(2+7d),解得:d=2,
所以数列{an}是首项、公差均为2的等差数列,
所以数列{an}的前n项和Tn=2×$\frac{n(n+1)}{2}$=n(n+1),
因为$\frac{1}{{T}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
所以Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查三角恒等变换,考查数列的通项及前n项和,考查正弦定理、辅助角公式,考查裂项相消法,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{3}$-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天数216362574
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2$\frac{B}{2}$.
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:$\{\frac{a_n}{n}\}$是公差为1的等差数列,且${a_{n+1}}=\frac{n+2}{n}{a_n}+1$.
(1)求数列{an}的通项公式an
(2)设${b_n}=\frac{1}{{\sqrt{{a_{n+1}}{a_n}}}}$,求数列{bn}的前n项和;
(3)设${c_n}=\frac{1}{{\root{4}{a_n}}}$,${c_1}+{c_2}+{c_3}+…+{c_n}≤2\sqrt{n}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,$tanA=\frac{1}{4},tanB=\frac{3}{5}$,若△ABC最小边为$\sqrt{2}$,则△ABC最大边的边长为$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=(  )
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案