精英家教网 > 高中数学 > 题目详情
6.已知数列{an}满足:$\{\frac{a_n}{n}\}$是公差为1的等差数列,且${a_{n+1}}=\frac{n+2}{n}{a_n}+1$.
(1)求数列{an}的通项公式an
(2)设${b_n}=\frac{1}{{\sqrt{{a_{n+1}}{a_n}}}}$,求数列{bn}的前n项和;
(3)设${c_n}=\frac{1}{{\root{4}{a_n}}}$,${c_1}+{c_2}+{c_3}+…+{c_n}≤2\sqrt{n}-1$.

分析 (1)通过${a_{n+1}}=\frac{n+2}{n}{a_n}+1$及公差可知首项$\frac{{a}_{1}}{1}$=1,进而利用等差数列的通项公式可得结论;
(2)通过(1)裂项可知${b_n}=\frac{1}{{({n+1})n}}=\frac{1}{n}-\frac{1}{n+1}$,进而并项相加即得结论;
(3)通过(1)放缩、并项相加可得结论.

解答 解:(1)因为$\{\frac{a_n}{n}\}$是公差为1的等差数列,且${a_{n+1}}=\frac{n+2}{n}{a_n}+1$,
所以$\frac{a_2}{2}-{a_1}=1,{a_2}=3{a_1}+1,解之得{a_1}=1$…(2分)
所以$\frac{a_n}{n}=1+({n-1})=n$,
所以${a_n}={n^2}$…(4分)
(2)因为${b_n}=\frac{1}{{\sqrt{{a_{n+1}}{a_n}}}}$,
所以${b_n}=\frac{1}{{({n+1})n}}=\frac{1}{n}-\frac{1}{n+1}$…(6分)
所以数列{bn}的前n项和${s_n}=({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}=\frac{n}{n+1}$…(8分)
(3)因为${c_n}=\frac{1}{{\root{4}{a_n}}}=\frac{1}{{\sqrt{n}}}=\frac{2}{{2\sqrt{n}}}<\frac{2}{{\sqrt{n}+\sqrt{n-1}}}=2({\sqrt{n}-\sqrt{n-1}})({n≥2})$…(10分)
   所以${c_1}+{c_2}+{c_3}+…+{c_n}≤1+2({\sqrt{2}-1})+2({\sqrt{3}-\sqrt{2}})+…+2({\sqrt{n}-\sqrt{n-1}})=2\sqrt{n}-1$,
当且仅当n=1时取等号…(12分)

点评 本题是一道关于数列与不等式的综合题,考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(3,-$\sqrt{3}$),x∈[0,π].
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求x的值;
(2)记f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,求f(x)的最大值和最小值以及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若双曲线x2-$\frac{{y}^{2}}{m}$=1的离心率为$\sqrt{3}$,则实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an}的前n项和为Sn,a3=3,S4=10,则 $\sum_{k=1}^{n}$$\frac{1}{{S}_{k}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-2c=0.
(1)求A.
(2)若等差数列{an}的公差不为零,且a1cosA=-1,且a2、a4、a8成等比数列,设{an}的前n项和为Tn,求数列{$\frac{1}{{T}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2xlnx-1.
(1)求函数f(x)的最小值;
(2)若不等式f(x)≤3x2+2ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正方体ABCD-A1B1C1D1的棱长为a,在此几何体中,给出下面四个结论:①异面直线A1D与AB1所成角为60°;②直线A1D与BC1垂直;③直线A1D与BD1平行;④三棱锥A-A1CD的体积为$\frac{1}{6}{a^3}$,其中正确的结论个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
经计算得 $\overline{x}$=$\frac{1}{16}$$\sum_{i=1}^{16}$xi=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})$≈0.212,$\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}$≈18.439,$\sum_{i=1}^{16}$(xi-$\overline{x}$)(i-8.5)=-2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i=1,2,…,n)的相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+3,x≤1}\\{x+\frac{2}{x},x>1}\end{array}$,设a∈R,若关于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,则a的取值范围是(  )
A.[-$\frac{47}{16}$,2]B.[-$\frac{47}{16}$,$\frac{39}{16}$]C.[-2$\sqrt{3}$,2]D.[-2$\sqrt{3}$,$\frac{39}{16}$]

查看答案和解析>>

同步练习册答案