精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\left\{\begin{array}{l}{x+1}&{x>0}\\{1}&{x=0}\\{-x+1}&{x<0}\end{array}\right.$是偶函数(填“奇”或“偶”).

分析 根据函数奇偶性的定义进行判断即可.

解答 解:若x>0,则-x<0,则f(-x)=-(-x)+1=x+1=f(x),
若x<0,则-x>0,则f(-x)=-x+1=f(x),
综上f(-x)=f(x),
故函数f(x)是偶函数,
故答案为:偶.

点评 本题主要考查函数奇偶性的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=4x+3,g(x)=x2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.斜率k=-$\frac{5}{4}$,且过点A(1,5)的直线l与x轴交于点P,则点P的坐标为(  )
A.(3.4,0)B.(13,0)C.(5,0)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求证:函数f(x)=-x2+2在(-∞,0)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知幂函数f(x)=(t3-t+1)x${\;}^{\frac{1}{5}(7+3t-2{t}^{2})}$ (t∈Z)是偶函数,且在区间[0,+∞)上是增函数,求整数t的值,并作出相应的幂函数的大致图象;
(2)已知幂函数f(x)=$\frac{1}{{x}^{2-m-{m}^{2}}}$在(-∞,0)上是减函数.求m的最大负整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|2x+1|+||x-1|.
(1)解不等式f(x)<2;
(2)设函数g(x)=log2(|2x+1|+||x-1|-a)的定义域为全体实数R,求实数a的取值范围;当值域是全体实数R时,求出实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A到B的映射为f1:x→y=2x+1,集合B到C的映射为f2:y→z=y2-1,则集合A到C的映射f的对应法则是什么?集合A中的元素1在C中的象是什么?集合C中的元素0在A中的原象又是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的值域:
(1)y=$\frac{2x+1}{x-3}$;                
(2)y=x2-4x+6,x∈[1,5);
(3)y=$\frac{5{x}^{2}+8x+5}{{x}^{2}+1}$;              
(4)y=2x-$\sqrt{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=1+cos$\frac{ωπ}{3}$x,其中ω的值是抛掷一枚均匀的骰子所得的点数,则函数f(x)在区间[0,4]上有5个以下或6个以上(不含5个和6个)函数值为1的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案