精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx+ax(a∈R).
(1)求f(x)的单调区间;
(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

(1) 当a≥0时,f(x)的单调递增区间为(0,+∞);
当a<0时,f(x)的单调递增区间为,单调递减区间为.
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,曲线yf(x)在点(1,f(1))处的切线方程为x+2y-3=0.求ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.其中.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数的值;
(3)当<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=+a,g(x)=aln x-x(a≠0).
(1)求函数f(x)的单调区间;
(2)求证:当a>0时,对于任意x1,x2,总有g(x1)<f(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数)的两个极值点
(1)若,求函数的解析式;
(2)若,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若的极值点,求上的最大值;
(2)若函数上的单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=xln xg(x)=x3ax2x+2.
(1)求函数f(x)的单调区间;
(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.

查看答案和解析>>

同步练习册答案