17£®¶ÔÓÚº¯Êýf£¨x£©=x${\;}^{\frac{1}{2}}}$¶¨ÒåÓòÄÚµÄÈÎÒâx1£¬x2ÇÒx1¡Ùx2£¬¸ø³öÏÂÁнáÂÛ£º
£¨1£©f£¨x1+x2£©=f£¨x1£©•f£¨x2£©
£¨2£©f£¨x1•x2£©=f£¨x1£©•f£¨x2£©
£¨3£©$\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}$£¾0
£¨4£©f£¨$\frac{{{x_1}+{x_2}}}{2}$£©£¾$\frac{{f£¨{x_1}£©+f£¨{x_2}£©}}{2}$
ÆäÖÐÕýÈ·½áÂÛΪ£º£¨2£©£¨3£©£¨4£©£®

·ÖÎö ¸ù¾ÝÃݺ¯ÊýµÄÐÔÖÊ£¬´úÈë·Ö±ð½øÐÐÅжϼ´¿É£®

½â´ð ½â£º£¨1£©µ±x1=1£¬x2=2ʱ£¬f£¨x1+x2£©=f£¨2£©=$\sqrt{2}$£¬f£¨x1£©•f£¨x2£©=1¡Á1=1£¬¡à´íÎó£»  
£¨2£©f£¨x1•x2£©=$\sqrt{{x}_{1}{x}_{2}}$=$\sqrt{{x}_{1}}$•$\sqrt{{x}_{2}}$=f£¨x1£©•f£¨x2£©£¬¡àÕýÈ·£®
£¨3£©$\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}$£¾0£¬¡àº¯Êýf£¨x£©=${x}^{\frac{1}{2}}$ΪÔöº¯Êý£¬¡àÕýÈ·£»         
£¨4£©f£¨$\frac{{{x_1}+{x_2}}}{2}$£©£¾$\frac{{f£¨{x_1}£©+f£¨{x_2}£©}}{2}$µÄº¯ÊýΪ͹º¯Êý£¬¡àÕýÈ·£®
¹Ê£¨2£©£¨3£©£¨4£©ÕýÈ·£®
¹Ê´ð°¸Îª£¨2£©£¨3£©£¨4£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃݺ¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÒªÇóÊìÁ·ÕÆÎÕÖ¸ÊýÃݵÄÔËË㣬ºÍÃݺ¯ÊýµÄÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈôÔÚÇø¼ä[0£¬2¦Ð]ÉÏËæ»úȡһ¸öÊýx£¬ÔòsinxµÄÖµ½éÓÚ0µ½$\frac{{\sqrt{3}}}{2}$Ö®¼äµÄ¸ÅÂÊΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Éè¡÷ABCÊÇÈñ½ÇÈý½ÇÐΣ¬Èý¸öÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ð¼ÇΪa£¬b£¬c£¬²¢ÇÒ£¨sinB-sinC£©£¨sinB+sinC£©=sin£¨${\frac{¦Ð}{3}$-C£©sin£¨${\frac{¦Ð}{3}$+C£©£®
£¨1£©Çó½ÇBµÄÖµ£»
£¨2£©Èô$\overrightarrow{BC}$•$\overrightarrow{BA}$=12£¬b=2$\sqrt{7}$£¬Çóa£¬b£¨ÆäÖÐc£¼a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÈôÅ×ÎïÏßx2=ay£¨a¡Ù0£©ÔÚx=1´¦µÄÇÐÏßÇãб½ÇΪ45¡ã£¬Ôò¸ÃÅ×ÎïÏßµÄ×¼Ïß·½³ÌΪy=-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÈçͼËùʾµÄËÄÀâ×¶P-ABCDÖУ¬ÒÑÖªPA¡ÍÆ½ÃæABCD£¬AD¡ÎBC£¬¡ÏBAD=90¡ã£¬PA=AB=BC=1£¬AD=2£¬EΪPDµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPAC¡ÍÆ½ÃæPDC£»
£¨¢ò£©ÇóÖ±ÏßECÓëÆ½ÃæPACËù³É½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¹ýA£¨1£¬2£©ºÍB£¨3£¬4£©Á½µãµÄÖ±ÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªµãA£¬B£¬C¶¼ÔÚÇòÃæÉÏ£¬ÇÒÇòÐÄOµ½Æ½ÃæABCµÄ¾àÀëµÈÓÚÇòµÄ°ë¾¶µÄ$\frac{1}{2}$£¬ÇÒAB=2£¬AC=2$\sqrt{2}$£¬BC=2$\sqrt{3}$£¬ÉèÈýÀâ×¶O-ABCµÄÌå»ýΪV1£¬ÇòµÄÌå»ýΪV2£¬Ôò$\frac{V_1}{V_2}$=£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{16¦Ð}$B£®$\frac{{\sqrt{2}}}{8¦Ð}$C£®$\frac{{\sqrt{2}}}{4¦Ð}$D£®$\frac{{\sqrt{2}}}{2¦Ð}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\frac{|x|}{x+2}$-kx2£¨k¡ÊR£©ÓÐËĸö²»Í¬µÄÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®k£¼0B£®k£¼1C£®0£¼k£¼1D£®k£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èñ½ÇÈý½ÇÐÎABCµÄÃæ»ýΪ10$\sqrt{3}$£¬ÇÒAB=5£¬AC=8£¬ÔòBC=7£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸