精英家教网 > 高中数学 > 题目详情
7.若在区间[0,2π]上随机取一个数x,则sinx的值介于0到$\frac{{\sqrt{3}}}{2}$之间的概率为$\frac{1}{3}$.

分析 解出关于三角函数的不等式,使得sinx的值介于0到$\frac{{\sqrt{3}}}{2}$之间,在所给的范围中,求出符合条件的角的范围,根据几何概型公式用角度之比求解概率.

解答 解:∵0<sinx<$\frac{\sqrt{3}}{2}$,x∈[0,2π],
∴x∈(0,$\frac{π}{3}$)∪($\frac{2π}{3}$,2π),区间长度为$\frac{2π}{3}$
∵区间[0,2π]区间长度为2π,
∴sinx的值介于0到$\frac{{\sqrt{3}}}{2}$之间的概率为$\frac{1}{3}$
故答案为$\frac{1}{3}$.

点评 本题主要考查了几何概型.古典概型和几何概型是我们学习的两大概型,在解题过程中不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知A(1,1),B(4,2),则直线AB的斜率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式x2+x<$\frac{a}{b}$+$\frac{9b}{a}$对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是(  )
A.(-∞,3)∪(2,+∞)B.(-6,1)C.(-∞,-6)∪(1,+∞)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的方程|logax|=m(a>0且a≠1,m>0)有两个不相等的实数根x1,x2,则x1x2与1的大小关系是(  )
A.x1x2>1B.x1x2<1C.x1x2=1D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.O是面α上一定点,A,B,C是面α上△ABC的三个顶点,∠B,∠C分别是边AC,AB的对角.以下命题正确的是②③④⑤.(把你认为正确的序号全部写上)
①动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,则△ABC的外心一定在满足条件的P点集合中;
②动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|}}$)(λ>0),则△ABC的内心一定在满足条件的P点集合中;
③动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|sinB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|sinC}}$)(λ>0),则△ABC的重心一定在满足条件的P点集合中;
④动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),则△ABC的垂心一定在满足条件的P点集合中.
⑤动点P满足$\overrightarrow{OP}$=$\frac{{\overrightarrow{OB}+\overrightarrow{OC}}}{2}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),则△ABC的外心一定在满足条件的P点集合中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知各项均为正数的等差数列{an}满足:anan+1=4n2-1(n∈N*).
(1)求{an}的通项公式;
(2)设bn=$\frac{4n}{({a}_{n}{a}_{n+1})^{2}}$,证明b1+b2+…+bn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={(x,y)|$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y≥0}\\{2x+ay-2≤0}\end{array}\right.$},若存在x0∈R,使得(x0,1)∈A,则实数a的取值范围是[-6,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等比数列{an}中,a5=6,则数列{log6an}的前9项和等于(  )
A.6B.9C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于函数f(x)=x${\;}^{\frac{1}{2}}}$定义域内的任意x1,x2且x1≠x2,给出下列结论:
(1)f(x1+x2)=f(x1)•f(x2
(2)f(x1•x2)=f(x1)•f(x2
(3)$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0
(4)f($\frac{{{x_1}+{x_2}}}{2}$)>$\frac{{f({x_1})+f({x_2})}}{2}$
其中正确结论为:(2)(3)(4).

查看答案和解析>>

同步练习册答案