分析 (1)由已知数列递推式列式求得首项和公差,则等差数列的通项公式可求;
(2)把数列通项公式代入bn=$\frac{4n}{({a}_{n}{a}_{n+1})^{2}}$,然后利用裂项相消法求和证明.
解答 (1)解:设{an}的公差为d,a1>0,
则$\left\{\begin{array}{l}{{a}_{1}{a}_{2}={a}_{1}({a}_{1}+d)=3}\\{{a}_{2}{a}_{3}=({a}_{1}+d)({a}_{1}+2d)=15}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,
∴an=1+2(n-1)=2n-1;
(2)证明:${b}_{n}=\frac{4n}{({a}_{n}{a}_{n+1})^{2}}=\frac{4n}{(2n-1)^{2}(2n+1)^{2}}$=$\frac{1}{2}[\frac{1}{(2n-1)^{2}}-\frac{1}{(2n+1)^{2}}]$,
∴b1+b2+…+bn=$\frac{1}{2}$[($1-\frac{1}{{3}^{2}}$)+($\frac{1}{{3}^{2}}-\frac{1}{{5}^{2}}$)+…+($\frac{1}{(2n-1)^{2}}-\frac{1}{(2n+1)^{2}}$)]
=$\frac{1}{2}(1-\frac{1}{(2n+1)^{2}})<\frac{1}{2}$.
点评 本题考查数列递推式,考查了裂项相消法求数列的前n项和,训练了数列不等式的证法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com