精英家教网 > 高中数学 > 题目详情
9.已知点A,B,C都在球面上,且球心O到平面ABC的距离等于球的半径的$\frac{1}{2}$,且AB=2,AC=2$\sqrt{2}$,BC=2$\sqrt{3}$,设三棱锥O-ABC的体积为V1,球的体积为V2,则$\frac{V_1}{V_2}$=(  )
A.$\frac{{\sqrt{2}}}{16π}$B.$\frac{{\sqrt{2}}}{8π}$C.$\frac{{\sqrt{2}}}{4π}$D.$\frac{{\sqrt{2}}}{2π}$

分析 求出三角形ABC的外心,利用球心到△ABC所在平面的距离为球半径的一半,求出球的半径,即可求出三棱椎O-ABC的体积为V1,球的体积为V2,从而求$\frac{V_1}{V_2}$.

解答 解:由题意AB=2,AC=2$\sqrt{2}$,BC=2$\sqrt{3}$,∵AB2+AC2=BC2,可知三角形是直角三角形,
三角形的外心是BC的中点,球心到截面的距离就是球心与三角形外心的距离,
设球的半径为R,球心到△ABC所在平面的距离为球半径的一半,
所以R2=($\frac{1}{2}R$)2+3,
解得R2=4,
∴V2=$\frac{32}{3}$π,V1=$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{2}×1$=$\frac{2\sqrt{2}}{3}$,
∴$\frac{V_1}{V_2}$=$\frac{\sqrt{2}}{16π}$,
故选:A.

点评 本题是中档题,考查球的内接多面体,找出球的半径满足的条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知集合A={(x,y)|$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y≥0}\\{2x+ay-2≤0}\end{array}\right.$},若存在x0∈R,使得(x0,1)∈A,则实数a的取值范围是[-6,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f′(x)为函数f(x)的导函数,且f′(x)=x2+2x-8,则函数y=f(x+2)的单调递减区间为(  )
A.(-2,4)B.(-6,0)C.(-4,2)D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于函数f(x)=x${\;}^{\frac{1}{2}}}$定义域内的任意x1,x2且x1≠x2,给出下列结论:
(1)f(x1+x2)=f(x1)•f(x2
(2)f(x1•x2)=f(x1)•f(x2
(3)$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0
(4)f($\frac{{{x_1}+{x_2}}}{2}$)>$\frac{{f({x_1})+f({x_2})}}{2}$
其中正确结论为:(2)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x+$\sqrt{3}$y=0的倾斜角为(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=1+2i,那么$\frac{1}{z}$等于(  )
A.$\frac{\sqrt{5}}{5}$+$\frac{2\sqrt{5}}{5}$iB.$\frac{\sqrt{5}}{5}$-$\frac{2\sqrt{5}}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={0,1},B={(x,y)|x∈A,y∈A},则B中所含元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A(3,2)、B(-4,0),P是椭圆$\frac{x^2}{25}$+$\frac{y^2}{9}$=1上的一点,则|PA|+|PB|的最大值为10+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=3x-2恒过定点P,则P点的坐标是(2,1).

查看答案和解析>>

同步练习册答案