分析 (1)利用待定系数法,求切变变换T所对应的矩阵M;
(2)利用切变变换,求B1变化后的对应点B2的坐标.
解答 解:(1)设$M=[\begin{array}{l}1\\ c\end{array}\right.,\left.\begin{array}{l}b\\ 1\end{array}]$,则有$[\begin{array}{l}1\\ c\end{array}\right.,\left.\begin{array}{l}b\\ 1\end{array}][\begin{array}{l}1\\ 1\end{array}]=[\begin{array}{l}1\\-1\end{array}]$得$\left\{\begin{array}{l}b=0\\ c=-2\end{array}\right.$
所以$M=[\begin{array}{l}1\\-2\end{array}\right.,\left.\begin{array}{l}0\\ 1\end{array}]$…(7分)
(2)由$[\begin{array}{l}cos({-{{45}^0}})\\ sin({-{{45}^0}})\end{array}\right.,\left.\begin{array}{l}-sin({-{{45}^0}})\\ cos({-{{45}^0}})\end{array}][\begin{array}{l}1\\-1\end{array}]=[\begin{array}{l}\frac{{\sqrt{2}}}{2}\\-\frac{{\sqrt{2}}}{2}\end{array}\right.,\left.\begin{array}{l}\frac{{\sqrt{2}}}{2}\\ \frac{{\sqrt{2}}}{2}\end{array}][\begin{array}{l}1\\-1\end{array}]=[\begin{array}{l}0\\-\sqrt{2}\end{array}]$
得B2(0,$-\sqrt{2}$)…(15分)
点评 本题考查切变变换,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com