分析 (1)利用两角和的正弦公式可得t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),把t=sinx+cosx两边平方化为sinxcosx=$\frac{{t}^{2}-1}{2}$.代入即可得到g(t);
(2))由x∈[0,$\frac{π}{2}$],可得t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[1,$\sqrt{2}$],g(t)=t2-2t-5a+2=(t-1)2-5a+1在区间[1,$\sqrt{2}$]上单调递增,g(t)min=g(1)=1-5a,从而f(x)min=1-5a,由此得到1-5a≥6-2a,易求a的取值范围.
解答 解:(1)∵t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
∴t2=sin2x+cos2x+2sinxcosx,
∴sinxcosx=$\frac{{t}^{2}-1}{2}$.
∵f(x)=1-cos(2x+$\frac{π}{2}$)-2$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx)-5a+2
=3+sin2x-2(sinx+cosx)-5a
=3+2sinxcosx-2(sinx+cosx)-5a
=3+2×$\frac{{t}^{2}-1}{2}$-2t-5a
=t2-2t-5a+2,
∴f(x)=g(t)=t2-2t-5a+2(t∈[-$\sqrt{2}$,$\sqrt{2}$]);
(2)∵x∈[0,$\frac{π}{2}$],
∴t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[1,$\sqrt{2}$],
又∵g(t)=t2-2t-5a+2=(t-1)2-5a+1在区间[1,$\sqrt{2}$]上单调递增,
所以g(t)min=g(1)=1-5a,从而f(x)min=1-5a,
要使不等式f(x)≥6-2a在区间[0,$\frac{π}{2}$]上恒成立,
只要1-5a≥6-2a,
解得a≤-$\frac{5}{3}$.
点评 熟练掌握两角和的正弦公式、sinx+cosx与sinxcosx的关系、倍角公式、三角函数的单调性、单调性的定义、二次函数最值的求法是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com