精英家教网 > 高中数学 > 题目详情
在△ABC上,B=60°,b2=ac,则△ABC的形状为
 
考点:余弦定理
专题:解三角形
分析:由余弦定理且B=60°得b2=a2+c2-ac,再由b2=ac,得a2+c2-ac=ac,得a=c,得A=B=C=60°,得△ABC的形状是等边三角形.
解答: 解:由余弦定理得:b2=a2+c2-2accosB=a2+c2-ac,又b2=ac,
∴a2+c2-ac=ac,∴(a-c)2=0,∴a=c,∴A=B=C=60°,
∴△ABC的形状是等边三角形.
故答案为:等边三角形.
点评:本题考查三角形的形状判断,用到余弦定理,在一个式子里面未知量越少越好,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
3
x-log2x,正实数a,b,c是公差为正数的等差数列,且满足f(a)f(b)f(c)<0.若实数d是方程f(x)=0的一个解,那么下列四个判断:①a<b<d<c;②a<d<b<c;③d<a<b<c;④a<b<c<d中有可能成立的个数为(  )
A、①②B、②③C、③④D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

设三个正实数a、b、c,若存在x∈(-1,1),使得a2=b2+c2-2bcx成立,试问以a、b、c为三边的长是否可以构成三角形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查我校高一高二两个年级学生是否支持某项课外运动,用简单随机抽样方法从我校调查了500位同学,结果如下:
  高一年级 高二年级
不支持 30 40
支持 160 270
(Ⅰ)估计我校高一高二两个年级学生中,支持该项课外活动同学的比例;
(Ⅱ)能否可以认为我校高一高二两个年级学生是否支持该项课外活动与同学所在年级有关?(参考公式及相关数据见本题下方)
(Ⅲ)根据(Ⅱ)的结论,指明是否需要采用分层抽样的调查方法来估计我校高一高二两个年级学生中支持该项课外活动的比例?
附:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2
     
P(x2≥k) 0.050 0.030  0.001 
k  3.041  6.635  10.828
经计算得:n1+n2+n+1n+2=1.77×109

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,∠C=45°,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,且对任意的正整数m、n满足am+n=am+an+2mn,求a2014

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足
A1P
A1B

(Ⅰ)当λ=
1
2
时,求直线PN与平面ABC所成的角θ的正弦值;
(Ⅱ)若平面PMN与平面ABC所成的角为45°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式ax2-3x+2>0的解集为{x|x<1或x>b}
(1)求a,b的值;
(2)解关于x的不等式ax2-(a+b)x+b>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(Ⅰ)y=
2
3
x3+log2x;
(Ⅱ)y=xtan2x.

查看答案和解析>>

同步练习册答案