精英家教网 > 高中数学 > 题目详情
棱长为a的正方体AC1中,设M、N、E、F分别为棱A1B1、A1D1、C1D1、B1C1的中点.
(1)求证:E、F、B、D四点共面;
(2)求证:面AMN∥面EFBD.
考点:平面与平面平行的判定,平面的基本性质及推论
专题:空间位置关系与距离
分析:(1)只要证明EF∥BD即可;
(2)利用面面平行的判定定理,只要判断EF∥MN,FB∥AN,即可.
解答: 证明:(1)因棱长为a的正方体AC1中,设E、F分别为棱A1B1、A1D1、C1D1、B1C1的中点,
所以EF∥B1D1
又B1D1∥BD,
所以EF∥BD,
所以E、F、B、D四点共面;
(2)因为M、N、E、F分别为棱A1B1、A1D1、C1D1、B1C1的中点.
所以EF∥B1D1∥MN,
即EF∥MN,
连接FN,由四边形A1B1FN是平行四边形,

所以FN∥A1B1,又A1B1∥AB,
所以FN∥AB,FN=AB,
所以FB∥AN,又EF∩FB=F,MN∩AN=N,
所以面AMN∥面EFBD.
点评:本题考查了以正方体为载体的四点共面以及面面平行的判定,关键是正确利用正方体的性质以及已知为面面平行创造条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令
HA
=
a
HB
=
b
HC
=
c
HO1
=
p
,求证:
(1)2
p
=
b
+
c
-
a

(2)H为△O1O2O3的外心.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛.其中一道题是连线体,要求将3种不同的消防工具与它们的用途一对一连线,规定:每连对一条得3分,连错一条扣1分,参赛者必须把消防工具与用途一对一全部连起来.
(Ⅰ)设三种消防工具分别为A,B,C,其用途分别为a,b,c,若把连线方式表示为
ABC
bca
,规定第一行A,B,C的顺序固定不变,请列出所有连线的情况;
(Ⅱ)求某参赛者得分为1分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中ab为非零常数.若ab>0,判断f(x)的单调性.若ab<0,解关于x的不等式f(x+1)>f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,则下列不等式一定成立的是(  )
A、a-3>b-3
B、ac>bc
C、
a
c
b
c
D、a+2>b+3

查看答案和解析>>

科目:高中数学 来源: 题型:

cot(-370°)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前9项和为153.
(1)数列{an}中是否存在确定的项?若存在,求出该确定的项,若不存在,请说明理由.
(2)若a2=8,从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,按原来的顺序构成新数列{bn},求数列{bn}的前n项和Tn,并求使m•(an-2)<Tn+6恒成立的最大正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
c
x+1
,其中c为常数,且函数f(x)的图象过点(1,
1
2
).
(1)求c的值;
(2)求函数g(x)=x+xf(x)的零点;
(3)证明:函数f(x)在(-1,+∞)上是单调递减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(sinx,cosx,1),
b
=(
3
cosx,cosx,-1),若
a
b
=0,求x.

查看答案和解析>>

同步练习册答案