5£®Ä³Ð£¸ß¶þÉÏÆÚÔ¿¼ÓïÎÄÊÔÌâµÄÁ¬ÏßÌâÈçÏ£º
½«ÖйúËÄ´óÃûÖøÓëËüÃǵÄ×÷ÕßÁ¬Ïߣ¬Ã¿±¾ÃûÖøÖ»ÄÜÓëÒ»Ãû×÷ÕßÁ¬Ïߣ¬Ã¿Ãû×÷ÕßÒ²Ö»ÄÜÓëÒ»±¾ÃûÖøÁ¬
Ïߣ®ÆäµÃ·Ö±ê×¼ÊÇ£ºÃ¿Á¬¶ÔÒ»¸öµÃ3·Ö£¬Á¬´íµÃ-1·Ö£®

Ò»Ãû¿¼ÉúÓÉÓÚ¿¼Ç°Ã»¸´Ï°±¾ÖªÊ¶µã£¬ËùÒÔ¶Ô´Ë¿¼µãÒ»ÎÞËùÖª£¬¿¼ÊÔʱֻµÃËæÒâÁ¬Ïߣ¬ÏÖ½«¸Ã¿¼ÉúµÄ
µÃ·Ö¼Ç×÷¦Î£®
£¨¢ñ£©ÇóÕâÃû¿¼ÉúËùÓÐÁ¬Ïß·½·¨×ÜÊý£»
£¨¢ò£©Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©ËùÓÐÁ¬Ïß·½·¨×ÜÊýΪËĸöÔªËØÔÚËĸöλÖõÄÈ«ÅÅÁУ»
£¨¢ò£©¦Î=-4£¬0£¬4£¬12£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¼´¿ÉÇóµÃ¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£© ËùÓÐÁ¬Ïß·½·¨×ÜÊýΪËĸöÔªËØÔÚËĸöλÖõÄÈ«ÅÅÁУ¬ËùÒÔÁ¬Ïß·½·¨×ÜÊýÊÇ$A_4^4=24$ÖÖ£®
£¨¢ò£© ¦ÎµÄ¿ÉÄÜȡֵΪ-4£¬0£¬4£¬12£¬
P£¨¦Î=12£©=$\frac{1}{A_4^4}=\frac{1}{24}$£¬
P£¨¦Î=4£©=$\frac{C_4^2}{A_4^4}=\frac{1}{4}$£¬
P£¨¦Î=0£©=$\frac{C_4^1¡Á2}{A_4^4}=\frac{1}{3}$£¬
P£¨¦Î=-4£©=$\frac{3¡Á3}{A_4^4}=\frac{9}{24}$£¬
¦ÎµÄ·Ö²¼ÁÐΪ£º

¦Î-40412
P$\frac{9}{24}$$\frac{1}{3}$$\frac{1}{4}$$\frac{1}{24}$
ÊýѧÆÚÍû$E¦Î=-4¡Á\frac{9}{24}+4¡Á\frac{1}{4}+12¡Á\frac{1}{24}=0$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇó½â£¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÆÚÍû£¬½âÌâµÄ¹Ø¼üÊÇÕýÈ·Àí½âʼþ£¬Çó¸ÅÂÊ£¬È·¶¨±äÁ¿µÄȡֵ£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÅ×ÎïÏßy2=4xÓëË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾0£¬b£¾0£©$µÄÒ»Ìõ½¥½üÏß½»ÓÚµãM£¨MÒìÓÚÔ­µã£©£¬ÇÒµãMµ½Å×ÎïÏß½¹µãµÄ¾àÀëµÈÓÚ3£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{2}$B£®$\frac{{\sqrt{6}}}{2}$C£®$\sqrt{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÊýÁÐ{an}¡¢{bn}¶¼Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬b1ÊÇÕýÕûÊý£¬Èôa1+b1=10£¬Ôòa${\;}_{{b}_{1}}$+a${\;}_{{b}_{2}}$+¡­+a${\;}_{{b}_{9}}$=£¨¡¡¡¡£©
A£®81B£®99C£®108D£®117

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®É趨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{-\frac{1}{2x}-2x£¬0£¼x¡Ü1}\\{{x}^{2}-2x-\frac{3}{2}£¬x£¾1}\end{array}\right.$£¬g£¨x£©=f£¨x£©+a£¬Ôòµ±ÊµÊýaÂú×ã2£¼a£¼$\frac{5}{2}$ʱ£¬º¯Êýy=g£¨x£©µÄÁãµã¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªm£¬nΪÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃΪÈý¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôm¡În£¬m?¦Á£¬Ôòn¡Î¦ÁB£®Èôm¡În£¬m?¦Á£¬n?¦Â£¬Ôò¦Á¡Î¦Â
C£®Èô¦Á¡Í¦Â£¬¦Á¡Í¦Ã£¬Ôò¦Â¡Î¦ÃD£®Èôm¡În£¬m¡Í¦Á£¬n¡Í¦Â£¬Ôò¦Á¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªf£¨x£©=x2+ax+sin$\frac{¦Ð}{2}$x£¬x¡Ê£¨0£¬1£©
£¨1£©Èôf£¨x£©ÔÚ¶¨ÒåÓòÄÚµ¥µ÷µÝÔö£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©µ±a=-2ʱ£¬¼Çf£¨x£©µÃ¼«Ð¡ÖµÎªf£¨x0£©£¬Èôf£¨x1£©=f£¨x2£©£¬ÇóÖ¤£ºx1+x2£¾2x0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ð¡Ã÷²Î¼ÓijÏî×ʸñ²âÊÔ£¬ÏÖÓÐ10µÀÌ⣬ÆäÖÐ6µÀ¿Í¹ÛÌ⣬4µÀÖ÷¹ÛÌ⣬СÃ÷Ðè´Ó10µÀÌâÖÐÈÎÈ¡3µÀÌâ×÷´ð
£¨1£©ÇóСÃ÷ÖÁÉÙÈ¡µ½1µÀÖ÷¹ÛÌâµÄ¸ÅÂÊ
£¨2£©ÈôÈ¡µÄ3µÀÌâÖÐÓÐ2µÀ¿Í¹ÛÌ⣬1µÀÖ÷¹ÛÌ⣬ÉèСÃ÷´ð¶ÔÿµÀ¿Í¹ÛÌâµÄ¸ÅÂʶ¼ÊÇ$\frac{3}{5}$£¬´ð¶ÔÿµÀÖ÷¹ÛÌâµÄ¸ÅÂʶ¼ÊÇ$\frac{4}{5}$£¬ÇÒ¸÷Ìâ´ð¶ÔÓë·ñÏ໥¶ÀÁ¢£¬ÉèX±íʾСÃ÷´ð¶ÔÌâµÄ¸öÊý£¬ÇóxµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Éè$\overrightarrow{e_1}£¬\overrightarrow{e_2}$ÊÇÆ½ÃæÄÚÁ½¸ö²»¹²ÏßµÄÏòÁ¿£¬$\overrightarrow{AB}=£¨a-1£©\overrightarrow{e_1}+\overrightarrow{e_2}$£¬$\overrightarrow{AC}=b\overrightarrow{e_1}-2\overrightarrow{e_2}$£¬a£¾0£¬b£¾0£®ÈôA£¬B£¬CÈýµã¹²Ïߣ¬Ôò$\frac{1}{a}+\frac{2}{b}$µÄ×îСֵÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬Ô²OµÄÖ±¾¶ÎªAB£¬°ë¾¶OC´¹Ö±ÓÚAB£¬MΪAOÉÏÒ»µã£¬CMµÄÑÓ³¤Ïß½»Ô²OÓÚN£¬¹ýNµãµÄÇÐÏß½»BAµÄÑÓ³¤ÏßÓÚP£®
£¨¢ñ£©ÇóÖ¤£ºPM2=PA•PB£»
£¨¢ò£©ÈôÔ²OµÄ°ë¾¶Îª4$\sqrt{3}$£¬OA=$\sqrt{3}$OM£¬ÇóPNµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸