精英家教网 > 高中数学 > 题目详情
14.设$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的向量,$\overrightarrow{AB}=(a-1)\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{AC}=b\overrightarrow{e_1}-2\overrightarrow{e_2}$,a>0,b>0.若A,B,C三点共线,则$\frac{1}{a}+\frac{2}{b}$的最小值是4.

分析 根据三点关系,建立条件关系,求出a,b的关系式,利用1的代换,结合基本不等式的应用进行求解即可.

解答 解:∵a>0,b>0.若A,B,C三点共线,
∴设$\overrightarrow{AB}$=x$\overrightarrow{AC}$,
即(a-1)$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$=x(b$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$),
∵$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的向量,
∴$\left\{\begin{array}{l}{a-1=xb}\\{1=-2x}\end{array}\right.$,解得x=-$\frac{1}{2}$,a-1=-$\frac{1}{2}$b,
即a+$\frac{1}{2}$b=1,
则$\frac{1}{a}+\frac{2}{b}$=($\frac{1}{a}+\frac{2}{b}$)(a+$\frac{1}{2}$b)=1+1+$\frac{b}{2a}$+$\frac{2a}{b}$≥2$+2\sqrt{\frac{b}{2a}•\frac{2a}{2b}}$=2+2=4,
当且仅当$\frac{b}{2a}$=$\frac{2a}{b}$,即b=2a,即a=$\frac{1}{2}$,b=$\frac{1}{4}$时,取等号,
故最小值为4,
故答案为:4;

点评 本题主要考查基本不等式的应用,根据向量关系求出a,b的关系,以及利用基本不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(2cosθ-sinθ)=3与ρ(cosθ+2sinθ)=-1的交点的极坐标为$(\sqrt{2},\frac{7π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高二上期月考语文试题的连线题如下:
将中国四大名著与它们的作者连线,每本名著只能与一名作者连线,每名作者也只能与一本名著连
线.其得分标准是:每连对一个得3分,连错得-1分.

一名考生由于考前没复习本知识点,所以对此考点一无所知,考试时只得随意连线,现将该考生的
得分记作ξ.
(Ⅰ)求这名考生所有连线方法总数;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的焦点是F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),点P在椭圆C上且满足|PF1|+|PF2|=4
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若A为椭圆C的下顶点,过点A的两条互相垂直的直线分别交椭圆C于点P,Q(P,Q与A不重合),试证明直线PQ经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a=${∫}_{0}^{π}$(sinx+cosx)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项是-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,已知点P(2,$\frac{π}{3}$),Q为曲线ρ=cosθ上任意一点,则|PQ|的最小值为$\frac{\sqrt{13}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设数列{xn}的各项都为正数且x1=1.如图,△ABC所在平面上的点Pn (n∈N*)均满足△PnAB与△PnAC的面积比为3:1,若$\overrightarrow{{P_n}A}=\frac{1}{3}{x_{n+1}}\overrightarrow{{P_n}B}-(2{x_n}+1)\overrightarrow{{P_n}C}$,则x5的值为(  )
A.31B.33C.61D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,AB是圆O的直径,CD⊥AB于D,且AD=2BD,E为AD的中点,连接CE并延长交圆O于F,若CD=$\sqrt{2}$,则EF=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(1,2sinA),$\overrightarrow{n}$=(sinA,1+cosA),满足$\overrightarrow{m}∥\overrightarrow{n}$,求A的大小.

查看答案和解析>>

同步练习册答案