精英家教网 > 高中数学 > 题目详情
9.设a=${∫}_{0}^{π}$(sinx+cosx)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项是-160.

分析 求定积分求得a的值,然后写出二项展开式的通项,由x得指数为0求得r值,代入通项求得常数项.

解答 解:a=${∫}_{0}^{π}$(sinx+cosx)dx=$(-cosx+sinx){|}_{0}^{π}=-cosπ+sinπ+cos0-sin0$=2.
∴(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6=$(2\sqrt{x}-\frac{1}{\sqrt{x}})^{6}$.
其通项${T}_{r+1}={C}_{6}^{r}•(2\sqrt{x})^{6-r}•(-\frac{1}{\sqrt{x}})^{r}$=$(-1)^{r}•{C}_{6}^{r}•{2}^{6-r}•{x}^{3-r}$=$(-1)^{r}•{C}_{6}^{r}•{2}^{6-r}•{x}^{3-r}$.
由3-r=0,得r=3.
∴二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项是${T}_{4}=-{2}^{3}•{C}_{6}^{3}=-160$.
故答案为:-160.

点评 本题考查了定积分,考查了二项式定理,关键是熟练掌握二项展开式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设Sn为数列{an}的前n项和,数列{an}满足a1=a,${S_n}=({2^n}-1){a_n}$,其中a<0.
(1)求数列{an}的通项公式;
(2)设${b_n}={a_n}-{log_2}\frac{a_n}{a_1}$,Tn为数列{bn}的前n项和,若当且仅当n=4时,Tn取得最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是(  )
A.若m∥n,m?α,则n∥αB.若m∥n,m?α,n?β,则α∥β
C.若α⊥β,α⊥γ,则β∥γD.若m∥n,m⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.小明参加某项资格测试,现有10道题,其中6道客观题,4道主观题,小明需从10道题中任取3道题作答
(1)求小明至少取到1道主观题的概率
(2)若取的3道题中有2道客观题,1道主观题,设小明答对每道客观题的概率都是$\frac{3}{5}$,答对每道主观题的概率都是$\frac{4}{5}$,且各题答对与否相互独立,设X表示小明答对题的个数,求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,每位同学通过测试的概率为0.7,试求:
(Ⅰ)选出的三位同学中至少有一名女同学的概率;
(Ⅱ)选出的三位同学中同学甲被选中并且通过测试的概率;
(Ⅲ)设选出的三位同学中男同学的人数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的向量,$\overrightarrow{AB}=(a-1)\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{AC}=b\overrightarrow{e_1}-2\overrightarrow{e_2}$,a>0,b>0.若A,B,C三点共线,则$\frac{1}{a}+\frac{2}{b}$的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C:x2-xy+y2=3,矩阵$M=({\begin{array}{l}{\frac{{\sqrt{2}}}{2}}&{\frac{{\sqrt{2}}}{2}}\\{-\frac{{\sqrt{2}}}{2}}&{\frac{{\sqrt{2}}}{2}}\end{array}})$,且曲线C在矩阵M对应的变换的作用下得到曲线C′.
(Ⅰ)求曲线C′的方程;
(Ⅱ)求曲线C的离心率以及焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司对员工进行身体素质综合素质,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)
优秀良好合格
1807020
120a30
按优秀、良好、合格三个等级分层,从中抽取50人,成绩为优秀的有30人.
(1)求a的值;
(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选2人,求抽取两人刚好是一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cos($\frac{π}{4}$+x)=$\frac{4}{5}$,x∈(-$\frac{π}{2}$,-$\frac{π}{4}$),求$\frac{sin2x-2si{n}^{2}x}{1+tanx}$的值.

查看答案和解析>>

同步练习册答案