精英家教网 > 高中数学 > 题目详情
4.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,每位同学通过测试的概率为0.7,试求:
(Ⅰ)选出的三位同学中至少有一名女同学的概率;
(Ⅱ)选出的三位同学中同学甲被选中并且通过测试的概率;
(Ⅲ)设选出的三位同学中男同学的人数为ξ,求ξ的概率分布列和数学期望.

分析 (Ⅰ)利用对立事件概率公式能求出选出的三位同学中至少有一名女同学的概率.
(Ⅱ)同学甲被选中的概率为$\frac{{C}_{9}^{2}}{{C}_{10}^{3}}$=0.3,由此能求出同学甲被选中且通过测试的概率.
(Ⅲ)根据题意,ξ的可能取值为0、1、2、3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.

解答 解:(Ⅰ)至少有一名女同学的概率为1-$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{5}{6}$…(4分)
(Ⅱ)同学甲被选中的概率为$\frac{{C}_{9}^{2}}{{C}_{10}^{3}}$=0.3,
则同学甲被选中且通过测试的概率为0.3×0.7=0.21 …(8分)
(Ⅲ)根据题意,ξ的可能取值为0、1、2、3,
P(ξ=0)=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$,P(ξ=1)=$\frac{{C}_{6}^{1}{C}_{4}^{2}}{{C}_{10}^{3}}$=$\frac{3}{10}$,P(ξ=2)=$\frac{{C}_{6}^{2}{C}_{4}^{1}}{{C}_{10}^{3}}$=$\frac{1}{2}$,P(ξ=3)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$
所以,ξ的分布列为:

ξ0123
P$\frac{1}{30}$$\frac{3}{10}$$\frac{1}{2}$$\frac{1}{6}$
E(ξ)=0×$\frac{1}{30}$+1×$\frac{3}{10}$+2×$\frac{1}{2}$+3×$\frac{1}{6}$=1.8  …(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.集合{x∈Z|-1≤x≤1}的子集个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=(x2+bx+c)ex在(-∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,且f(x1)=x1,则关于x的方程[f(x)]2+(b+2)f(x)+b+c=0的不同实根个数是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.下表是我市2014年12月18日至31日的空气质量指数统计表,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,假设此期间恰逢本市创建“全国文明城市”验收评估,专家组随机选择12月18日至29日的某一天到达本市,并住留3天(包括到达的当天).
日期18192021222324
空气质量指数794560155210209160
日期25262728293031
空气质量指数90781501239690180
(1)请作出18日至31日的空气质量指数变化趋势的拆线图,并由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明).
(2)设x表示专家组停留期间空气质量优良的天数,求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D在边BC上,椭圆G以A,D为焦点,且经过B,C,现以线段AD所在直线为x轴,线段AD的中点O为坐标原点建立直角坐标系.
(1)求椭圆G的方程;
(2)Q($\frac{\sqrt{5}}{2}$,1)为椭圆G内的一定点,点P是椭圆上的一动点,求PQ+PD的最值;
(3)设椭圆G分别与x,y正半轴交于M,N两点,且y=kx(k>0)与椭圆G相交于E、F两点,求四边形MENF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a=${∫}_{0}^{π}$(sinx+cosx)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项是-160.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直三棱柱ABC-A1B1C1中,已知AA1=BC=AB=2,AB⊥BC.
(1)求四棱锥A1-BCC1B1的体积;
(2)求二面角B1-A1C-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点B(4,0)、C(2,2),平面直角坐标系上的动点P满足$\overrightarrow{OP}=λ•\overrightarrow{OB}+μ•\overrightarrow{OC}$(其中O是坐标原点,且1<λ≤a,1<μ≤b),若动点P组成的区域的面积为8,则a+b的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三角形ABC中,D,E为边AB的三等分点,已知$\overrightarrow{CA}=3\overrightarrow{a}$,$\overrightarrow{CB}=2\overrightarrow{b}$,求$\overrightarrow{CD}$和$\overrightarrow{CE}$.

查看答案和解析>>

同步练习册答案