19£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=4£¬BC=3£¬µãDÔÚ±ßBCÉÏ£¬ÍÖÔ²GÒÔA£¬DΪ½¹µã£¬ÇÒ¾­¹ýB£¬C£¬ÏÖÒÔÏß¶ÎADËùÔÚÖ±ÏßΪxÖᣬÏß¶ÎADµÄÖеãOÎª×ø±êÔ­µã½¨Á¢Ö±½Ç×ø±êϵ£®
£¨1£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨2£©Q£¨$\frac{\sqrt{5}}{2}$£¬1£©ÎªÍÖÔ²GÄÚµÄÒ»¶¨µã£¬µãPÊÇÍÖÔ²ÉϵÄÒ»¶¯µã£¬ÇóPQ+PDµÄ×îÖµ£»
£¨3£©ÉèÍÖÔ²G·Ö±ðÓëx£¬yÕý°ëÖá½»ÓÚM£¬NÁ½µã£¬ÇÒy=kx£¨k£¾0£©ÓëÍÖÔ²GÏཻÓÚE¡¢FÁ½µã£¬ÇóËıßÐÎMENFÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄ¶¨Ò壬¿ÉµÃ4a=12£¬½âµÃa=3£¬ÔÙÓɶ¨Òå¿ÉµÃCD=2£¬ÔËÓù´¹É¶¨Àí¿ÉµÃAD£¬½áºÏÍÖÔ²µÄa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÔËÓÃÍÖÔ²µÄ¶¨ÒåºÍÈý½ÇÐεÄÈý±ß¹ØÏµ£¬¼´¿ÉµÃµ½×îÖµ£»
£¨3£©ÁªÁ¢Ö±Ïßy=kxºÍÍÖÔ²·½³Ì£¬½âµÃE£¬FµÄ×ø±ê£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉµÃËıßÐÎMENFÃæ»ýΪS=$\frac{1}{2}$|ON|•|xE-xF|+$\frac{1}{2}$|OM|•|yE-yF|£¬´úÈ뻯¼òÕûÀí£¬ÔÙÓÉ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×î´óÖµ£®

½â´ð ½â£º£¨1£©ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=4£¬BC=3£¬
¼´ÓÐAB=$\sqrt{{3}^{2}+{4}^{2}}$=5£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃAB+BC+AC=4a=12£¬
½âµÃa=3£¬¼´ÓÐCD=2a-4=2£¬
Óɹ´¹É¶¨Àí¿ÉµÃAD=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$£¬
¼´ÓÐc=$\sqrt{5}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=2£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©ÓÉ£¨1£©¿ÉµÃA£¨-$\sqrt{5}$£¬0£©£¬D£¨$\sqrt{5}$£¬0£©£¬
ÓÉÍÖÔ²¶¨Òå¿ÉµÃPQ+PD=PQ+6-PA=6-£¨PA-PQ£©£¬
ÓÉ|PA-PQ|¡Ü|AQ|=$\sqrt{£¨\frac{3\sqrt{5}}{2}£©^{2}+1}$=$\frac{7}{2}$£¬
¼´ÓÐ-$\frac{7}{2}$¡ÜPA-PQ¡Ü$\frac{7}{2}$£¬µ±ÇÒ½öµ±A£¬P£¬QÈýµã¹²Ïߣ¬µÈºÅ³ÉÁ¢£®
¼´ÓÐPQ+PDµÄ×îСֵΪ6-$\frac{7}{2}$=$\frac{5}{2}$£¬×î´óֵΪ6+$\frac{7}{2}$=$\frac{19}{2}$£»
£¨3£©ÓÉy=kx´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨4+9k2£©x2=36£¬
½âµÃx=¡À$\frac{6}{\sqrt{4+9{k}^{2}}}$£¬y=¡À$\frac{6k}{\sqrt{4+9{k}^{2}}}$£¬
¿ÉÉèE£¨$\frac{6}{\sqrt{4+9{k}^{2}}}$£¬$\frac{6k}{\sqrt{4+9{k}^{2}}}$£©£¬F£¨-$\frac{6}{\sqrt{4+9{k}^{2}}}$£¬-$\frac{6k}{\sqrt{4+9{k}^{2}}}$£©£¬
ÓÖM£¨3£¬0£©£¬N£¨0£¬2£©£¬
ËıßÐÎMENFÃæ»ýΪS=$\frac{1}{2}$|ON|•|xE-xF|+$\frac{1}{2}$|OM|•|yE-yF|
=$\frac{12}{\sqrt{4+9{k}^{2}}}$+$\frac{3}{2}$•$\frac{12k}{\sqrt{4+9{k}^{2}}}$=$\frac{6£¨2+3k£©}{\sqrt{4+9{k}^{2}}}$=6$\sqrt{1+\frac{12}{9k+\frac{4}{k}}}$
¡Ü6$\sqrt{1+\frac{12}{2\sqrt{36}}}$=6$\sqrt{2}$£¬
µ±ÇÒ½öµ±9k=$\frac{4}{k}$¼´k=$\frac{2}{3}$ʱ£¬È¡µÃ×î´óÖµ£®
ÔòÓе±k=$\frac{2}{3}$ʱ£¬ËıßÐÎMENFÃæ»ýµÄ×î´óֵΪ4$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄ¶¨ÒåºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³ÌÇ󽻵㣬ͬʱ¿¼²éÈý½ÇÐεÄÃæ»ýºÍ»ù±¾²»µÈʽµÄÔËÓã¬×¢Ò⹫ʽµÄÁé»îÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªA£¨1£¬-2£©£¬B£¨a£¬-1£©£¬C£¨-b£¬0£©Èýµã¹²Ïߣ¬ÆäÖÐa£¾0£¬b£¾0£¬ÔòabµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{4}$C£®$\frac{1}{6}$D£®$\frac{1}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬ÇÒf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+2£¬x¡Ê[0£¬1]}\\{2-{x}^{2}£¬x¡Ê£¨-1£¬0£©}\end{array}\right.$£¬f£¨x+1£©=f£¨x-1£©£¬Ôò·½³Ìf£¨x£©=$\frac{2x+1}{x}$ÔÚÇø¼ä[-3£¬3]ÉϵÄËùÓÐʵ¸ùÖ®ºÍΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®0D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªsin¦Á+sin¦Â=$\frac{\sqrt{3}}{3}$£¨cos¦Â-cos¦Á£©£¬ÇÒ¦Á¡Ê£¨0£¬¦Ð£©£¬¦Â¡Ê£¨0£¬¦Ð£©£¬Ôò¦Á-¦ÂµÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{2¦Ð}{3}$B£®-$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{3}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôµãOΪ¡÷ABCÍâ½ÓÔ²µÄÔ²ÐÄ£¬¡ÑOµÄ°ë¾¶r=2.5£¬MΪ¡÷ABCµÄ´¹ÐÄ£¬ÏÒAB=3£¬Ôò$\overrightarrow{MO}•\overrightarrow{BC}$µÄ×î´óֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®´Ó6ÃûÄÐͬѧºÍ4ÃûŮͬѧÖÐËæ»úÑ¡³ö3Ãûͬѧ²Î¼ÓÒ»Ï¼¼²âÊÔ£¬Ã¿Î»Í¬Ñ§Í¨¹ý²âÊԵĸÅÂÊΪ0.7£¬ÊÔÇó£º
£¨¢ñ£©Ñ¡³öµÄÈýλͬѧÖÐÖÁÉÙÓÐÒ»ÃûŮͬѧµÄ¸ÅÂÊ£»
£¨¢ò£©Ñ¡³öµÄÈýλͬѧÖÐͬѧ¼×±»Ñ¡Öв¢ÇÒͨ¹ý²âÊԵĸÅÂÊ£»
£¨¢ó£©ÉèÑ¡³öµÄÈýλͬѧÖÐÄÐͬѧµÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬ÔÚ¡÷OABÖУ¬PΪÏß¶ÎABÉϵÄÒ»µã£¬$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$£¬ÇÒ$\overrightarrow{BP}$=3$\overrightarrow{PA}$£¬Ôò£¨¡¡¡¡£©
A£®x=$\frac{1}{4}$£¬y=$\frac{3}{4}$B£®x=$\frac{1}{3}$£¬y=$\frac{2}{3}$C£®x=$\frac{3}{4}$£¬y=$\frac{1}{4}$D£®x=$\frac{2}{3}$£¬y=$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Éèa£¬b¡Ê{1£¬2£¬3}£¬ÄÇôº¯Êýf£¨x£©=x2+bx+aÎÞÁãµãµÄ¸ÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®É躯Êýf£¨x£©=ex-2x2+x£¬g£¨x£©=f£¨x£©+2x2-2x-1
£¨1£©Ö¤Ã÷£ºº¯Êýf£¨x£©ÔÚRÉÏÖÁÉÙÓÐÁ½¸ö¼«Öµµã£»
£¨2£©Ö¤Ã÷£ºg£¨x£©¡Ý0£¬ÇÒ2¡Á3¡Á¡­¡Á£¨n+1£©£¼£¨$\sqrt{e}$£©${\;}^{{n}^{2}+n}$£¨n¡ÊN*£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸