精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)的定义域为R,且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),则方程f(x)=$\frac{2x+1}{x}$在区间[-3,3]上的所有实根之和为(  )
A.-2B.-1C.0D.1

分析 由题意函数f(x)与函数y=$\frac{2x+1}{x}$在区间[-3,3]上的图象,结合图象求解即可.

解答 解:∵f(x+1)=f(x-1),
∴f(x)是周期为2的周期函数;
又∵f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,
作函数f(x)与函数y=$\frac{2x+1}{x}$在区间[-3,3]上的图象如下,

结合图象可知,
其共有3个实根,其中有两个关于原点对称,第三个为1;
故其实根之和为1;
故选D.

点评 本题考查了分段函数与周期函数的图象及性质,同时考查了方程的根与函数的图象的交点的关系应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若复数z满足(2+i)z=1+2i(i是虚数单位),则z的共轭复数所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知四棱锥P-ABCD中,侧面PAD⊥底面ABCD,AB∥CD,AD⊥CD,PA=PD=CD=2AB=2.
(1)求证:AB⊥PD;
(2)记AD=x,V(x)表示四棱锥P-ABCD的体积,当V(x)取得最大值时,求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式x2(x-1)(x+4)≥0的解集为{x|x≥1或x≤-4或x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}\frac{1}{16}{x^2}(0≤x≤2)\\{(\frac{1}{2})^x}(x>2)\end{array}$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{5}{2}$,-$\frac{1}{4}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$)C.(-$\frac{1}{2}$,-$\frac{1}{4}$)∪(-$\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,-$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=(x2+bx+c)ex在(-∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,且f(x1)=x1,则关于x的方程[f(x)]2+(b+2)f(x)+b+c=0的不同实根个数是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-$\frac{1}{2}$ax2-bx(a≠0)
(1)若b=2,若y=f(x)存在单调递减区间,求a的取值范围;
(2)若函数y=f(x)的图象与x轴交于A,B两点,线段AB的中点的横坐标为x0,证明:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D在边BC上,椭圆G以A,D为焦点,且经过B,C,现以线段AD所在直线为x轴,线段AD的中点O为坐标原点建立直角坐标系.
(1)求椭圆G的方程;
(2)Q($\frac{\sqrt{5}}{2}$,1)为椭圆G内的一定点,点P是椭圆上的一动点,求PQ+PD的最值;
(3)设椭圆G分别与x,y正半轴交于M,N两点,且y=kx(k>0)与椭圆G相交于E、F两点,求四边形MENF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等边△ABC的边长为1,D为边AC的中点,则$\overrightarrow{AB}$•$\overrightarrow{BD}$=$-\frac{3}{4}$.

查看答案和解析>>

同步练习册答案