精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx-$\frac{1}{2}$ax2-bx(a≠0)
(1)若b=2,若y=f(x)存在单调递减区间,求a的取值范围;
(2)若函数y=f(x)的图象与x轴交于A,B两点,线段AB的中点的横坐标为x0,证明:f′(x0)<0.

分析 (1)当b=2时,求导函数,根据函数y=f(x)存在单调递减区间,所以f′(x)<0有解,又因为x>0时,则ax2+2x-1>0有x>0的解,分类讨论,即可求得a的取值范围;
(2)设点A,B的坐标分别是(x1,0),(x2,0),0<x1<x2,则点AB的中点横坐标为x0=$\frac{{x}_{1}{+x}_{2}}{2}$,利用f(x2)-f(x1)=0,可得lnx2-lnx1=[$\frac{1}{2}$a(x2+x1)+b](x2-x1),从而得到f′(x0),构建新函数,即可证得f′(x0)<0.

解答 解:(I)当b=2时,f(x)=lnx-$\frac{1}{2}$ax2-2x(x>0),则f′(x)=-$\frac{{ax}^{2}+2x-1}{x}$,
因为函数y=f(x)存在单调递减区间,所以f′(x)<0有解.
又因为x>0时,则ax2+2x-1>0有x>0的解.
①当a>0时,y=ax2+2x-1为开口向上的抛物线,ax2+2x-1>0总有x>0的解;
②当a<0时,y=ax2+2x-1为开口向下的抛物线,若ax2+2x-1>0总有x>0的解;
则需△=4+4a>0,且方程ax2+2x-1=0至少有一正根.此时,-1<a<0.
综上所述,a的取值范围为(-1,0)∪(0,+∞)            
(II) 设点A,B的坐标分别是(x1,0),(x2,0),0<x1<x2,则点AB的中点横坐标为x0=$\frac{{x}_{1}{+x}_{2}}{2}$,
∵f(x2)-f(x1)=lnx2-lnx1-[$\frac{1}{2}$a(x2+x1)+b](x2-x1)=0
∴lnx2-lnx1=[$\frac{1}{2}$a(x2+x1)+b](x2-x1),∴ax0+b=$\frac{l{nx}_{2}-l{nx}_{1}}{{x}_{2}{-x}_{1}}$,
f′(x0)=$\frac{1}{{x}_{0}}$-ax0-b=$\frac{1}{{x}_{2}{-x}_{1}}$×[$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{1+\frac{{x}_{2}}{{x}_{1}}}$-ln$\frac{{x}_{2}}{{x}_{1}}$]
设t=$\frac{{x}_{2}}{{x}_{1}}$,则y=$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{1+\frac{{x}_{2}}{{x}_{1}}}$-ln$\frac{{x}_{2}}{{x}_{1}}$=$\frac{2(t-1)}{1+t}$-lnt,t>1
令r(t)=$\frac{2(t-1)}{1+t}$-lnt,则r′(t)=-$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$,
因为t>1时,r′(t)<0,所以r(t)在[1,+∞)上单调递减.
故r(t)<r(1)=0
而 $\frac{1}{{x}_{2}{-x}_{1}}$>0,故f′(x0)<0.

点评 本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,考查学生分析解决问题的能力,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知公差不为零的等差数列{an},满足a1+a3+a5=12.,且a1,a5,a17成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+1}}$+…+$\frac{1}{{a}_{2n-1}}$,证明:$\frac{1}{2}≤$bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,M为该双曲线右支上一点,且|MF1|2,$\frac{1}{2}$|F1F2|2,|MF2|2成等差数列,该点到x轴的距离为$\frac{c}{2}$,则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的定义域为R,且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),则方程f(x)=$\frac{2x+1}{x}$在区间[-3,3]上的所有实根之和为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.体积为定值V0的正三棱柱,当它的底面边长为$\root{3}{4{v}_{0}}$时,正三棱柱的表面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sinα+sinβ=$\frac{\sqrt{3}}{3}$(cosβ-cosα),且α∈(0,π),β∈(0,π),则α-β等于(  )
A.-$\frac{2π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若点O为△ABC外接圆的圆心,⊙O的半径r=2.5,M为△ABC的垂心,弦AB=3,则$\overrightarrow{MO}•\overrightarrow{BC}$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在△OAB中,P为线段AB上的一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,且$\overrightarrow{BP}$=3$\overrightarrow{PA}$,则(  )
A.x=$\frac{1}{4}$,y=$\frac{3}{4}$B.x=$\frac{1}{3}$,y=$\frac{2}{3}$C.x=$\frac{3}{4}$,y=$\frac{1}{4}$D.x=$\frac{2}{3}$,y=$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题:
①已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2},x≥0}\\{{2}^{-x},x<0}\end{array}\right.$,则f[f(-2)]=4;
②已知O为平面内任意一点,A、B、C是平面内互不相同的三点,且满足$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$.x+y=1,则A、B、C三点共线;
③已知平面α∩平面β=l,直线a?α且a⊥直线l,直线b?β,则a⊥b是α⊥β的充要条件;
④若△ABC是锐角三角形,则cosA<sinB;
⑤若f(x)=sin(2x+φ)-cos(2x-φ)的最大值为1,且φ∈(0,$\frac{π}{2}$),则f(x)的单调递增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z).
其中真命题的序号为①②④(填写所有真命题的序号).

查看答案和解析>>

同步练习册答案