分析 确定△MF1F2是直角三角形,利用勾股定理,三角形的面积公式,双曲线的定义,可得a,c的关系,即可求出双曲线的离心率.
解答 解:∵|MF1|2,$\frac{1}{2}$|F1F2|2,|MF2|2成等差数列,
∴|MF1|2+|MF2|2=|F1F2|2,
∴△MF1F2是直角三角形,
∴4c2=m2+n2,
∵点到x轴的距离为$\frac{c}{2}$,
∴$\frac{1}{2}mn=\frac{1}{2}•2c•\frac{c}{2}$,
∴mn=c2,
又|m-n|=2a,
∴m2+n2-2mn=4a2,
∴c2=2a2,
∴e=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查双曲线的离心率,考查等差数列的性质,考查双曲线的定义,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[0,2\sqrt{2}]$ | B. | [0,2] | C. | [1,2] | D. | [0,8] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{5}{2}$,-$\frac{1}{4}$) | B. | (-$\frac{1}{2}$,-$\frac{1}{4}$) | C. | (-$\frac{1}{2}$,-$\frac{1}{4}$)∪(-$\frac{1}{4}$,-$\frac{1}{8}$) | D. | (-$\frac{1}{2}$,-$\frac{1}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com