精英家教网 > 高中数学 > 题目详情
10.已知奇函数y=f(x)的导函数f′(x)<0在R恒成立,且x,y满足不等式f(x2-2x)+f(y2-2y)≥0,则x2+y2的取值范围是(  )
A.$[0,2\sqrt{2}]$B.[0,2]C.[1,2]D.[0,8]

分析 根据函数的奇偶性结合函数的导数将不等式进行转化,利用直线和圆的性质进行求解即可.

解答 解:∵函数y=f(x)为奇函数,
∴不等式f(x2-2x)+f(y2-2y)≥0,等价为f(x2-2x)≥f(2y-y2),
由函数y=f(x)的导函数f'(x)<0在R恒成立,
∴函数y=f(x)为减函数,
∴x2-2x≤2y-y2
即(x-1)2+(y-1)2≤2,
则不等式对应的点的轨迹为圆心为(1,1),半径r=$\sqrt{2}$的圆及其内部.
故$\sqrt{{x^2}+{y^2}}$的几何意义为区域内的点到原点的距离,
最小值为0,最大值为直径$2\sqrt{2}$,
从而x2+y2的最小值为0,最大值为直径的平方8.
故x2+y2的取值范围是[0,8],•
故选:D.

点评 本题主要考查不等式范围的求解,根据函数的导数判断函数的单调性,以及函数的奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.(x+1)(x-2)4的展开式中含x3项的系数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知AB为⊙O的直径,CE⊥AB于点H,与⊙O交于点C、D,且AB=10,CD=8,DE=4,EF与⊙O切于点F,BF与HD交于点G.
(Ⅰ)证明:EF=EG;
(Ⅱ)求GH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知公差不为零的等差数列{an},满足a1+a3+a5=12.,且a1,a5,a17成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+1}}$+…+$\frac{1}{{a}_{2n-1}}$,证明:$\frac{1}{2}≤$bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图如图所示,则该几何体的体积是$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A(1,-2),B(a,-1),C(-b,0)三点共线,其中a>0,b>0,则ab的最大值是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=(-1,0)$,$\overrightarrow b=(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,M为该双曲线右支上一点,且|MF1|2,$\frac{1}{2}$|F1F2|2,|MF2|2成等差数列,该点到x轴的距离为$\frac{c}{2}$,则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若点O为△ABC外接圆的圆心,⊙O的半径r=2.5,M为△ABC的垂心,弦AB=3,则$\overrightarrow{MO}•\overrightarrow{BC}$的最大值为3.

查看答案和解析>>

同步练习册答案