精英家教网 > 高中数学 > 题目详情
1.如图,已知AB为⊙O的直径,CE⊥AB于点H,与⊙O交于点C、D,且AB=10,CD=8,DE=4,EF与⊙O切于点F,BF与HD交于点G.
(Ⅰ)证明:EF=EG;
(Ⅱ)求GH的长.

分析 (Ⅰ)证明:连接 AF、OE、OF,则A,F,G,H四点共圆,证明∠FGE=∠BAF=∠EFG,即可证明EF=EG;
(Ⅱ)求出EG,EH,即可求GH的长.

解答 (Ⅰ)证明:连接 AF、OE、OF,则A,F,G,H四点共圆
由EF是切线知OF⊥EF,∠BAF=∠EFG
∵CE⊥AB于点H,AF⊥BF,
∴∠FGE=∠BAF
∴∠FGE=∠EFG,
∴EF=EG…(5分)
(Ⅱ)解:∵OE2=OH2+HE2=OF2+EF2
∴EF2=OH2+HE2-OF2=48,
∴EF=EG=4$\sqrt{3}$,
∴GH=EH-EG=8-4$\sqrt{3}$…(10分)

点评 本题考查圆的内接四边形的性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设I是直角△ABC的内心,其中AB=3,BC=4,CA=5,若$\overrightarrow{AI}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=(  )
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分.当输入x1=7,x2=10时,输出P=7.5,则输入x3的值应为(  )
A.10B.9C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-(a+2)x+lnx.
(Ⅰ)当a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在区间(1,e)的有零点,求正数a的取值范围;
(Ⅲ)求证不等式${e^{\sum_{i=1}^n{\frac{i+1}{i^2}}}}>n$对任意的正整数n都成立(其中e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四个命题:
①样本相关系数r满足:|r|≤1,而且|r|越接近于1,线性相关关系越强:
②回归直线就是散点图中经过样本数据点最多的那条直线;
③命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
④己知点A(-l,0),B(l,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足(2+i)z=1+2i(i是虚数单位),则z的共轭复数所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U=R,集合A={x||x|≤1},B={x|log2x≤1},则∁UA∩B等于(  )
A.(0,1]B.[-1,1]C.(1,2]D.(-∞,-1)∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知奇函数y=f(x)的导函数f′(x)<0在R恒成立,且x,y满足不等式f(x2-2x)+f(y2-2y)≥0,则x2+y2的取值范围是(  )
A.$[0,2\sqrt{2}]$B.[0,2]C.[1,2]D.[0,8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}\frac{1}{16}{x^2}(0≤x≤2)\\{(\frac{1}{2})^x}(x>2)\end{array}$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{5}{2}$,-$\frac{1}{4}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$)C.(-$\frac{1}{2}$,-$\frac{1}{4}$)∪(-$\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,-$\frac{1}{8}$)

查看答案和解析>>

同步练习册答案