精英家教网 > 高中数学 > 题目详情
13.设定义在(0,+∞)上的函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{2x}-2x,0<x≤1}\\{{x}^{2}-2x-\frac{3}{2},x>1}\end{array}\right.$,g(x)=f(x)+a,则当实数a满足2<a<$\frac{5}{2}$时,函数y=g(x)的零点个数为(  )
A.1B.2C.3D.4

分析 当0<x≤1时,f(x)=-($\frac{1}{2x}$+2x),分析可知g(x)=f(x)+a有2个零点;当x>1时,令x2-2x-$\frac{3}{2}$+a=0可判断函数y=g(x)有1个零点;从而确定零点的个数即可.

解答 解:①当0<x≤1时,
f(x)=-($\frac{1}{2x}$+2x);
故f(x)在(0,$\frac{1}{2}$]上是增函数,f(x)≤-2;
f(x)在($\frac{1}{2}$,1]上是减函数,-$\frac{5}{2}$≤f(x)<-2;
故当2<a<$\frac{5}{2}$时,g(x)=f(x)+a有2个零点;
②当x>1时,令g(x)=f(x)+a=0得,
x2-2x-$\frac{3}{2}$+a=0,
△=4+4($\frac{3}{2}$-a)=4($\frac{5}{2}$-a)>0;
故方程x2-2x-$\frac{3}{2}$+a=0有两个不同的根;
而对称轴为x=1;
故函数y=g(x)有1个零点;
综上所述,函数y=g(x)的零点个数为3;
故选:C.

点评 本题考查了分类讨论的思想应用及函数的单调性的判断与应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设$\overrightarrow{e_1},\overrightarrow{e_2}$为单位向量,非零向量$\overrightarrow a=x\overrightarrow{e_1}+y\overrightarrow{e_2},x,y∈R$,若$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为$\frac{π}{4}$,则$\frac{|x|}{{\overrightarrow{|a|}}}$的最大值等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(2cosθ-sinθ)=3与ρ(cosθ+2sinθ)=-1的交点的极坐标为$(\sqrt{2},\frac{7π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=(  ) 
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程lg|x|=cosx根的个数为(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C的方程为$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=4,经过点(-1,0)作斜率为k的直线l,l与曲线C交于A、B两点,l与直线x=-4交于点D,O是坐标原点.
(Ⅰ)若$\overrightarrow{OA}+\overrightarrow{OD}=2\overrightarrow{OB}$,求证:k2=$\frac{5}{4}$;
(Ⅱ)是否存在实数k,使△AOB为锐角三角形?若存在,求k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高二上期月考语文试题的连线题如下:
将中国四大名著与它们的作者连线,每本名著只能与一名作者连线,每名作者也只能与一本名著连
线.其得分标准是:每连对一个得3分,连错得-1分.

一名考生由于考前没复习本知识点,所以对此考点一无所知,考试时只得随意连线,现将该考生的
得分记作ξ.
(Ⅰ)求这名考生所有连线方法总数;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的焦点是F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),点P在椭圆C上且满足|PF1|+|PF2|=4
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若A为椭圆C的下顶点,过点A的两条互相垂直的直线分别交椭圆C于点P,Q(P,Q与A不重合),试证明直线PQ经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,AB是圆O的直径,CD⊥AB于D,且AD=2BD,E为AD的中点,连接CE并延长交圆O于F,若CD=$\sqrt{2}$,则EF=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案