精英家教网 > 高中数学 > 题目详情
19.“M>N”是“log2M>log2N”成立的(  )条件.
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分又不必要条件

分析 当M>N时,不确定两个数字的正负,不一定得到log2M>log2N,即前者不一定推出后者;当log2M>log2N时,根据对数函数的单调性知有M>N,即后者可以推出前者,得到结论.

解答 解:∵当M>N时,不确定两个数字的正负,不一定得到log2M>log2N,
即前者不一定推出后者;
当log2M>log2N时,根据对数函数的单调性知有M>N,
即后者可以推出前者,
∴“M>N”是“log2M>log2N”成立的必要不充分条件,
故选:C.

点评 本题考查必要条件、充分条件与充要条件的判断,本题解题的关键是理解对数函数的单调性和对数函数的定义域,本题是一个易错题,容易忽略函数的定义域,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数g(x)=$\frac{{4}^{x}+n}{{2}^{x}}$是奇函数,f(x)=log4(4x+1)-mx是偶函数.
(1)求m+n的值;
(2)设h(x)=f(x)+$\frac{1}{2}$x,若g(x)>h[log4(2a+1)]对任意x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为得到函数$y=2sin(2x+\frac{π}{4})$的图象,只需将函数y=2cos2x的图象向右平移$a(0<a<\frac{π}{2})$个单位,则a=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)与g(x)的图象关于直线y=x对称,已知函数$f(x)={({\frac{1}{2}})^{-x}}$,则f(4)+g(4)的值为(  )
A.12B.18C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知过点A(1,1),且斜率为-m(m>0)的直线l与x,y轴分别交于P,Q,过P,Q作直线2x+y=0的垂线,垂足为R,S,
(1)用含m的表达式写出PR,QS,SR的长
(2)求四边形PRSQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若两个分类变量x和y的列联表为:则x与y之间有关系的可能性为(  )
y1y2合计
x1104555
x2203050
合计3075105
参考公式:
独立性检测中,随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.0250.0100.0050.001
k3.8415.02406.6357.87910.828
A.0.1%B.99.9%C.97.5%D.0.25%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个直角△ABC的三边分别是AC=3,BC=4,AB=5,将这个三角形绕直角边BC旋转一周,所形成的几何体的表面积是24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=4,E,F,H分别是棱PB,BC,PD的中点,则过E,F,H的平面截四棱锥P-ABCD所得截面面积为(  )
A.$2\sqrt{6}$B.$4\sqrt{6}$C.$5\sqrt{6}$D.$2\sqrt{3}+4\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若3AB=2AC,点E,F分别是AC,AB的中点,则$\frac{BE}{CF}$的取值范围为($\frac{1}{4}$,$\frac{7}{8}$).

查看答案和解析>>

同步练习册答案