【题目】设抛物线y2=4x的焦点为F,过点F作直线l与抛物线分别交于两点A,B,若点M满足 = ( + ),过M作y轴的垂线与抛物线交于点P,若|PF|=2,则M点的横坐标为 .
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的左、右顶点分别为A1、A2 , 上、下顶点分别为B2、B1 , O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为x2+y2= .
(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于﹣ ,试探求△OMN的面积是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒中装有编号分别为1,2,3,4的四个形状大小完全相同的小球.
(1)从盒中任取两球,求取出的球的编号之和大于5的概率.
(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,顶角D1在底面ABCD内的射影恰好为点C.
(1)求证:AD1⊥BC;
(2)若直线DD1与直线AB所成角为 ,求平面ABC1D1与平面ABCD所成角(锐角)的余弦值函数值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x﹣(e+ )]2+y2=1任意一点,则线段PQ的长度的最小值为( )
A.
B.
C.
D.e+ ﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.
(Ⅰ)求证:BD⊥A1C;
(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;
(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出 的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥A﹣BCD的所有棱长都相等,若AB与平面α所成角等于 ,则平面ACD与平面α所成角的正弦值的取值范围是( )
A.[ , ]
B.[ ,1]
C.[ ﹣ , + ]
D.[ ﹣ ,1]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com