| A. | (x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$ | B. | (x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$ | C. | (x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$ | D. | (x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$ |
分析 根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r;利用待定系数法分析可得$\left\{\begin{array}{l}{(a-2)^{2}={r}^{2}}\\{{a}^{2}+(0+1)^{2}={r}^{2}}\\{{a}^{2}+(0-1)^{2}={r}^{2}}\end{array}\right.$,解可得a、r的值,代入圆的标准方程即可得答案.
解答 解:根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r;
则有$\left\{\begin{array}{l}{(a-2)^{2}={r}^{2}}\\{{a}^{2}+(0+1)^{2}={r}^{2}}\\{{a}^{2}+(0-1)^{2}={r}^{2}}\end{array}\right.$,
解可得a=$\frac{3}{4}$,r2=$\frac{25}{16}$;
则要求圆的方程为:(x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$;
故选:C.
点评 本题考查圆的标准方程,要用待定系数法进行分析,关键是求出圆心的坐标以及半径.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲班 | 乙班 | 合计 | |
| 优秀 | 14 | 8 | 22 |
| 不优秀 | 6 | 12 | 18 |
| 合计 | 20 | 20 | 40 |
| P(x2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -$\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com