精英家教网 > 高中数学 > 题目详情
18.已知圆O的半径为1,A,B,C,D为该圆上四个点,且$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}$,则△ABC的面积最大值为(  )
A.2B.1C.$\sqrt{2}$D.$\sqrt{3}$

分析 利用向量关系,判断四边形的形状,然后求解三角形的面积的最大值即可.

解答 解:如图所示,
由$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{AD}$知,ABDC为平行四边形,
又A,B,C,D 四点共圆,
∴ABDC 为矩形,即BC 为圆的直径,
∴当AB=AC 时,△ABC 的面积取得最大值为$\frac{1}{2}$×${(\sqrt{2})}^{2}$=1.
故选:B.

点评 本题考查向量的几何中的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=2+tcosφ}\end{array}\right.$(t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将3个男同学和3个女同学排成一列,若男同学甲与另外两个男同学不相邻,则不同的排法种数为288.(用具体的数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x≥2,或x≤-1},B={x|log3(2-x)≤1},则A∩(∁RB)=(  )
A.{x|x<-1}B.{x|x≤-1,或x>2}C.{x|x≥2,或x=-1}D.{x|x<-1,或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线mx2+ny2=1(mn<0)的一条渐近线方程为$y=\sqrt{3}x$,则它的离心率为(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$D.2或$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知一个三棱锥的所有棱长均为$\sqrt{2}$,则该三棱锥的内切球的体积为$\frac{{\sqrt{3}}}{54}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为(  )
A.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$B.(x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$C.(x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$D.(x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的表面积是17π,则它的体积是(  )
A.B.$\frac{56π}{3}$C.$\frac{14π}{3}$D.$\frac{28π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是一个几何体的三视图,则该几何体的表面积为33π

查看答案和解析>>

同步练习册答案