精英家教网 > 高中数学 > 题目详情
17.抛掷两枚骰子,当至少有一枚5点或6点出现时,就说试验成功,则在30次独立重复试验中成功的次数X的数学期望是(  )
A.$\frac{40}{3}$B.$\frac{50}{3}$C.10D.20

分析 由题意知试验中的事件是相互独立的,事件发生的概率是相同的,得到成功次数ξ服从二项分布,根据二项分布的期望公式得到结果.

解答 解:∵成功次数ξ服从二项分布,
每次试验成功的概率为1-$\frac{2}{3}$×$\frac{2}{3}$=$\frac{5}{9}$,
∴在30次试验中,成功次数ξ的期望为 $\frac{5}{9}$×30=$\frac{50}{3}$.
故选:B.

点评 二项分布要满足的条件:每次试验中,事件发生的概率是相同的,各次试验中的事件是相互独立的,每次试验只要两种结果,要么发生要么不发生,随机变量是这n次独立重复试验中事件发生的次数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x(x-m)2在x=2处取得极小值,则常数m的值为(  )
A.2B.6C.2或6D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2-lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若?x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a=$\frac{e}{2}$,证明:ex-1f(x)≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.三位同学乘同一列火车,火车有10节车厢,则至少有2位同学上了同一车厢的概率为$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=$\sqrt{2}$,E,F为PD上两点,且PF=ED=$\frac{1}{3}$PD.
(1)求证:BF∥面ACE;
(2)求异面直线PC与AE所成角的余弦值;
(3)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{5}$+…+$\frac{{a}_{n}}{2n-1}$=3n+1,则数列{an}的通项公式为an=(2n-1)•2•3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点$F(\sqrt{3},0)$,长轴顶点到点A(0,-2)的距离为2$\sqrt{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设过A点的动直线l与椭圆C相交于M,N两点,当△OMN的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x3-3x2-12x
(1)求f(x)=2x3-3x2-12x的极值;
(2)设函数g(x)=2x3-3x2-12x+a的图象与x轴有两个交点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数y=f(x)在区间D上的导函数为f′(x),f′(x)在区间D上的导函数为g(x).若在区间D上,g(x)<0恒成立,则称函数f(x)在区间D上为“凸函数”.已知实数m是常数,f(x)=$\frac{x^4}{12}-\frac{{m{x^3}}}{6}-\frac{{3{x^2}}}{2}$,若对满足|m|≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,则b-a的最大值为(  )
A.3B.2C.1D.-1

查看答案和解析>>

同步练习册答案