精英家教网 > 高中数学 > 题目详情
如图所示程序框图中,输出S=(  )
  
A、45B、-55
C、-66D、66
考点:循环结构
专题:计算题,简易逻辑
分析:根据程序框图的流程,可判断程序的功能是求S=12-22+32-42+…+(-1)n+1•n2,判断程序运行终止时的n值,计算可得答案.
解答: 解:由程序框图知,第一次运行T=(-1)2•12=1,S=0+1=1,n=1+1=2;
第二次运行T=(-1)3•22=-4,S=1-4=-3,n=2+1=3;
第三次运行T=(-1)4•32=9,S=1-4+9=6,n=3+1=4;

直到n=9+1=10时,满足条件n>9,运行终止,此时T=(-1)10•92
S=1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+(8+9)-100=
1+9
2
×9-100=-55.
故选:B.
点评:本题考查了循环结构的程序框图,判断算法的功能是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x-
x

(I)求函数y=f(x)的零点的个数;
(Ⅱ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函数y=g(x)在(0,
1
e
)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥0
y-x≤0
x+y-2≤0
,则点(x,y)到圆(x+1)2+(y-10)2=4上的点的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如表所示:
规格类型
钢板类型
A B C
第一 2 1 1
第二 1 2 3
今需要A,B,C三种规格的成品分别是15,18,27块,至少需要这两种钢板共是
 
张.

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,该程序运行后输出的S的值是(  )
A、-3
B、-
1
2
C、
1
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的算法流程图中,最后一个输出的数是(  )
A、
3
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数f′(x),f′(0)>0,且f(x)的值域为[0,+∞),则
f(1)
f′(0)
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.
(Ⅰ)求t,p的值;
(Ⅱ)设A、B是抛物线上分别位于x轴两侧的两个动点,且
OA
OB
=5
(其中O为坐标原点).
(ⅰ)求证:直线AB必过定点,并求出该定点P的坐标;
(ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位招聘职工,经过几轮筛选,一轮从2000名报名者中筛选300名进入二轮笔试,接着按笔试成绩择优取100名进入第三轮面试,最后从面试对象中综合考察聘用50名.
(Ⅰ)求参加笔试的竞聘者能被聘用的概率;
(Ⅱ)用分层抽样的方式从最终聘用者中抽取10名进行进行调查问卷,其中有3名女职工,求被聘用的女职工的人数;
(Ⅲ)单位从聘用的三男和二女中,选派两人参加某项培训,至少选派一名女同志参加的概率是多少?

查看答案和解析>>

同步练习册答案