精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-x-
x

(I)求函数y=f(x)的零点的个数;
(Ⅱ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函数y=g(x)在(0,
1
e
)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-
1
e
考点:导数在最大值、最小值问题中的应用
专题:综合题,导数的综合应用
分析:(Ⅰ)易知x=0是y=f(x)的零点,从而x>0时,f(x)=x(x2-1-
1
x
),设φ(x)=x2-1-
1
x
,利用导数及零点判定定理可求函数零点个数;
(Ⅱ)化简得g(x)=lnx+
a
x-1
,其定义域是(0,1)∪(1,+∞),求导得g'(x)=
x2-(2+a)x+1
x(x-1)2
,令h(x)=x2-(2+a)x+1,则问题转化为h(x)=0有两个不同的根x1,x2,从而△=(2+a)2-4>0,且一根在(0,
1
e
)内,不妨设0<x1
1
e
,再由x1x2=1,得0<x1
1
e
<e<x2,根据零点判定定理可知只需h(
1
e
)<0,由此可求a的范围;
(Ⅲ)由(Ⅱ)可求y=g(x)在(1,+∞)内的最小值为g(x2),y=g(x)在(0,1)内的最大值为g(x1),由(Ⅱ)同时可知x1+x2=2+a,x1x2=1,x1∈(0,
1
e
)
,x2∈(e,+∞),故g(t)-g(s)≥g(x2)-g(x1)=lnx2+
a
x2-1
-lnx1-
a
x1-1
=ln
x2
x1
+
a
x2-1
-
a
x1-1
=lnx22+x2-
1
x2
(x2>e),令k(x)=lnx2+x-
1
x
=2lnx+x-
1
x
,利用导数可判断k(x)在(e,+∞)内单调递增,从而有k(x)>k(e),整理可得结论;
解答: 解:(Ⅰ)∵f(0)=0,∴x=0是y=f(x)的一个零点,
当x>0时,f(x)=x(x2-1-
1
x
),设φ(x)=x2-1-
1
x

φ'(x)=2x+
1
2
x3
>0,∴φ(x)在(0,+∞)上单调递增.
又φ(1)=-1<0,φ(2)=3-
1
2
>0,
故φ(x)在(1,2)内有唯一零点,
因此y=f(x)在(0,+∞)内有且仅有2个零点;
(Ⅱ)g(x)=
ax2+ax
x3-x
+lnx=
ax(x+1)
x(x+1)(x-1)
+lnx=lnx+
a
x-1

其定义域是(0,1)∪(1,+∞),
则g'(x)=
1
x
-
a
(x-1)2
=
x2-2x+1-ax
x(x-1)2
=
x2-(2+a)x+1
x(x-1)2

设h(x)=x2-(2+a)x+1,要使函数y=g(x)在(0,
1
e
)内有极值,则h(x)=0有两个不同的根x1,x2
∴△=(2+a)2-4>0,得a>0或a<-4,且一根在(0,
1
e
)内,不妨设0<x1
1
e

又x1x2=1,∴0<x1
1
e
<e<x2
由于h(0)=1,则只需h(
1
e
)<0,即
1
e2
-(a+2)•
1
e
+1<0,
解得a>e+
1
e
-2;
(Ⅲ)由(Ⅱ)可知,当x∈(1,x2)时,g'(x)<0,g(x)递减,x∈(x2,+∞)时,g'(x)>0,g(x)递增,
故y=g(x)在(1,+∞)内的最小值为g(x2),即t∈(1,+∞)时,g(t)≥g(x2),
又当x∈(0,x1)时,g'(x)>0,g(x)单调递增,x∈(x1,1)时,g'(x)<0,g(x)单调递减,
故y=g(x)在(0,1)内的最大值为g(x1),即对任意s∈(0,1),g(s)≤g(x1),
由(Ⅱ)可知x1+x2=2+a,x1x2=1,x1∈(0,
1
e
)
,x2∈(e,+∞),
因此,g(t)-g(s)≥g(x2)-g(x1)=lnx2+
a
x2-1
-lnx1-
a
x1-1
=ln
x2
x1
+
a
x2-1
-
a
x1-1
=lnx22+x2-
1
x2
(x2>e),
设k(x)=lnx2+x-
1
x
=2lnx+x-
1
x
,k'(x)=
2
x
+1+
1
x2
>0,
∴k(x)在(e,+∞)内单调递增,
故k(x)>k(e)=2+e-
1
e
,即g(t)-g(s)>e+2-
1
e
点评:本题考查利用导数研究函数的零点、极值、最值,考查转化思想,考查学生综合运用数学知识分析解决问题的能力,综合性强,能力要求比较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记等比数列{an}的前n项积为Πn,若a4•a5=2,则Π8=(  )
A、256B、81C、16D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

己知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线l与椭圆C交于不同两点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l斜率为1,求线段MN的长;
(Ⅲ)设线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如下表:
患心肺疾病 不患心肺疾病 合计
大于40岁 16
小于等于40岁 12
合计 40
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为
2
5

(1)请将2×2列联表补充完整;
(2)已知大于40岁患心肺疾病市民中,经检查其中有4名重症患者,专家建议重症患者住院治疗,现从这16名患者中选出两名,记需住院治疗的人数为ξ,求ξ的分布列和数学期望;
(3)能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中点在原点,焦点在x轴上,离心率等于
1
2
,它的一个顶点恰好是抛物线x2=8
3
y的焦点.
(1)求椭圆C的方程;
(2)已知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,ABCD为平行四边形,BC⊥平面PAB,AB=BC=
1
2
PB,∠APB=30°,M为PB的中点.
(1)求证:PD∥平面AMC;
(2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x与抛物线C:y=
1
4
x2
交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xB,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线y=
1
4
x2
的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

按照如图程序运行,则输出K的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示程序框图中,输出S=(  )
  
A、45B、-55
C、-66D、66

查看答案和解析>>

同步练习册答案