精英家教网 > 高中数学 > 题目详情
己知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线l与椭圆C交于不同两点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l斜率为1,求线段MN的长;
(Ⅲ)设线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用椭圆右焦点为F(1,0),点A(2,0)在椭圆C上,求出几何量,即可求椭圆C的方程;
(Ⅱ)直线l的方程为:y=x-1,代入椭圆方程,利用韦达定理,结合弦长公式,可求线段MN的长;
(Ⅲ)分类讨论,设直线MN的方程为y=k(x-1)(k≠0),代入椭圆方程,求出线段MN的垂直平分线方程,令x=0,得y0=
3k
3+4k2
=
1
3
k
+4k
,利用基本不等式,即可求y的取值范围.
解答: 解:(Ⅰ)由题意:c=1,a=2,b2=a2-c2=3,
所求椭圆方程为
x2
4
+
y2
3
=1
.                                            (3分)
(Ⅱ)由题意,直线l的方程为:y=x-1.
y=x-1
x2
4
+
y2
3
=1
得7x2-8x-8=0,x1+x2=
8
7
,  x1x2=-
8
7

所以|MN|=
1+k2
|x1-x2|=
24
7
.                                       (7分)
(Ⅲ)当MN⊥x轴时,显然y0=0.
当MN与x轴不垂直时,可设直线MN的方程为y=k(x-1)(k≠0).
y=k(x-1)
3x2+4y2=12
消去y整理得(3+4k2)x2-8k2x+4(k2-3)=0.
设M(x1,y1),N(x2,y2),线段MN的中点为Q(x3,y3),
x1+x2=
8k2
3+4k2

所以x3=
x1+x2
2
=
4k2
3+4k2
y3=k(x3-1)=
-3k
3+4k2

线段MN的垂直平分线方程为y+
3k
3+4k2
=-
1
k
(x-
4k2
3+4k2
)

在上述方程中令x=0,得y0=
3k
3+4k2
=
1
3
k
+4k

当k<0时,
3
k
+4k≤-4
3
;当k>0时,
3
k
+4k≥4
3

所以-
3
12
y0<0
,或0<y0
3
12

综上,y0的取值范围是[-
3
12
3
12
]
.                                     (10分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查基本不等式的运用,确定线段MN的垂直平分线方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+(a-2)x+6在区间[1,+∞)上是增函数,那么实数a的取值范围是(  )
A、a≥0B、a≤0
C、a≥4D、a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是异面直线,则下面四个命题:
①过直线a至少有一个平面平行于b;
②在空间中至少有一个平面分别与a,b都平行;
③在空间中至多有一条直线与a,b都相交.
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+px+q满足f(1)=f(2)=0,
(1)求函数f(x)的解析式;
(2)求函数f(x)在[0,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线C的顶点为O(0,0),焦点在y轴上,抛物线上的点(x0,1)到焦点的距离为2.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)过直线l:y=x-2上的动点P(除(2,0))作抛物线C的两条切线,切抛物线于A、B两点.
(i)求证:直线AB过定点Q,并求出点Q的坐标;
(ii) 若直线OA,OB分别交直线l于M、N两点,求△QMN的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的双曲线C经过A(-7,5)、B(-1,-1)两点.
(1)求双曲线C的方程;
(2)设直线l:y=x+m交双曲线C于M、N两点,且线段MN被圆E:x2+y2-12x+n=0(n∈R)三等分,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目“语文”和“数学”的考试.某考场考生的两科考试成绩数据统计如图所示,本次考试中成绩在[90,100]内的记为A,其中“语文”科目成绩在[80,90)内的考生有10人.

(Ⅰ)求该考场考生数学科目成绩为A的人数;
(Ⅱ)已知参加本考场测试的考生中,恰有2人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x-
x

(I)求函数y=f(x)的零点的个数;
(Ⅱ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函数y=g(x)在(0,
1
e
)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥0
y-x≤0
x+y-2≤0
,则点(x,y)到圆(x+1)2+(y-10)2=4上的点的距离的最小值为
 

查看答案和解析>>

同步练习册答案