精英家教网 > 高中数学 > 题目详情
已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π

(1)求|
a
|
的值;
(2)求证:
a
+
b
a
-
b
互相垂直.
考点:数量积判断两个平面向量的垂直关系,平面向量数量积的坐标表示、模、夹角
专题:平面向量及应用
分析:(1)利用数量积的性质和平方关系即可得出;
(2)只要证明(
a
+
b
)•(
a
-
b
)
=0即可.
解答: (1)解:|
a
|
=
cos2α+sin2α
=1.
(2)证明:∵|
b
|
=
cos2β+sin2β
=1,
(
a
+
b
)•(
a
-
b
)
=
a
2
-
b
2
=1-1=0,
(
a
+
b
)⊥(
a
-
b
)
点评:本题考查了数量积的性质和平方关系、向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=sinx+cosx的图象向左平移m(m>0)个长度单位后,所得到的函数为偶函数,则m的最小值是(  )
A、
π
4
B、
π
6
C、
4
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a+
2x
2x+1
(a∈R)
是定义在R上的奇函数.
(1)求实数a的值;
(2)解关于x的不等式f(x2-tx)>f(2x-2t)(其中t∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的定义域并判断函数的奇偶性;
(2)设F(x)=m
1-x2
+f(x)
,若记f(x)=t,求函数F(x)的最大值的表达式g(m);
(3)在(2)的条件下,求满足不等式g(-m)>(
9
4
)m
的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C为椭圆W:x2+2y2=2上的三个点,O为坐标原点.
(Ⅰ)若A,C所在的直线方程为y=x+1,求AC的长;
(Ⅱ)设P为线段OB上一点,且|OB|=3|OP|,当AC中点恰为点P时,判断△OAC的面积是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为2,圆心在直线y=-x+2上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与y轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式kx-2k≤k+2x的解是x≥1,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的斜率为2,且直线过(-1,3)点,求直线l与坐标轴的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
.若|
a
|=1,则|
a
|2+|
b
|2+|
c
|2的值是
 

查看答案和解析>>

同步练习册答案