【题目】已知函数
(
).
(1)若函数
有两个零点,求实数a的取值范围
(2)证明:![]()
【答案】(1)
;(2)证明见解析.
【解析】
(1)令
,得到
,令
,
,利用导数求得函数
的单调性与最小值
,要使函数
有两个零点,则函数
的图象与
有两个不同的交点,即可求解;
(2)要证明
,只需
,令
,利用导数求得函数的
的单调性与最值,即可求解.
(1)由题意,函数
的定义域为
,
令
,则
,
记
,
,
则
,令
,得
,
当
时,
,
单调递减,
当
时,
,
单调递增,
所以
有最小值,且为
,
又当
时,
;当
时,
,
所以要使函数
有两个零点,则函数
的图象与
有两个不同的交点,
则
,即实数a的取值范围为
.
(2)由(1)知,函数
有最小值为
,可得
,
当且仅当
时取等号,
因此要证明
,
即只需要证明
,
记
,则![]()
,
令
,得
.
当
时,
,
单调递增,
当
时,
,
单调递减,
所以
,
即
恒成立,当且仅当
时取等号,
所以
,当且仅当
时取等号.
科目:高中数学 来源: 题型:
【题目】如图1,在梯形
中,
,
,
,过
,
分别作
的垂线,垂足分别为
,
,已知
,
,将梯形
沿
,
同侧折起,使得平面
平面
,平面
平面
,得到图2.
![]()
(1)证明:
平面
;
(2)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.
![]()
若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列
,
的前n项和为
,则下列说法中正确的是( )
A.数列
是递增数列B.数列
是递增数列
C.数列
的最大项是
D.数列
的最大项是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,A的坐标为(2,0),B是第一象限内的一点,以C为圆心的圆经过OAB三点,且圆C在点A,B处的切线相交于P,若P的坐标为(4,2),则直线PB的方程为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点A1,A2,…,An,…B1,B2,…,Bn,…均在抛物线x=y2上,线段AnBn与x轴的交点为Hn.将△OA1B1,△H1A2B2,…,△HnAn+1Bn+1,…的面积分别记为S1,S2,…,Sn+1,….已知上述三角形均为等腰直角三角形,且它们的顶角分别为O,H1,…,Hn,….
![]()
(1)求S1和S2的值;
(2)证明:n≤sn≤n2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知
是椭圆
的左、右焦点,椭圆的短轴长为
,点
是椭圆
上的一点,过点
作
轴的垂线交椭圆于另一点
(
不过点
),且
的周长的最大值为8.
![]()
(1)求椭圆
的标准方程;
(2)若
过焦点
,在椭圆上取两点
,连接
,与
轴的交点分别为
,过点
作椭圆的切线
,当四边形
为菱形时,证明:直线
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植物感染
病毒极易导致死亡,某生物研究所为此推出了一种抗
病毒的制剂,现对
株感染了
病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:
)进行统计规定:植株吸收在
(包括
)以上为“足量”,否则为“不足量”.现对该
株植株样本进行统计,其中“植株存活”的
株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共
株.
编号 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
吸收量 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)完成以
下列联表,并判断是否可以在犯错误概率不超过
的前提下,认为“植株的存活”与“制剂吸收足量”有关?
吸收足量 | 吸收不足量 | 合计 | |
植株存活 |
| ||
植株死亡 | |||
合计 |
|
(2)若在该样本“制剂吸收不足量”的植株中随机抽取
株,求这
株中恰有
株“植株存活”的概率.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,其中![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com