精英家教网 > 高中数学 > 题目详情
8.如图,在长方体ABCD-A1B1C1D1中,AB=AD=2cm,AA1=3cm,则四棱锥A-BB1D1D的体积为4cm3

分析 由已知求出三棱柱ABD-A1B1D1的体积,减去三棱锥A-A1B1D1的体积得答案.

解答 解:如图,∵ABCD-A1B1C1D1是长方体,且AB=AD=2cm,AA1=3cm,
∴${V}_{A-B{B}_{1}{D}_{1}D}=\frac{1}{2}{V}_{A{C}_{1}}-{V}_{A-{A}_{1}{B}_{1}{D}_{1}}$=$\frac{1}{2}×2×2×3-\frac{1}{3}×\frac{1}{2}×2×2×3=4$(cm3).
故答案为:4.

点评 本题考查多面体体积的求法,训练了等积法求多面体的体积,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(1)[125${\;}^{\frac{1}{3}}$+($\frac{1}{16}$)${\;}^{\frac{1}{2}}$+49${\;}^{\frac{1}{2}}$]${\;}^{\frac{1}{4}}$;
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若定义域为[a-2,a+4]的函数f(x)=-(a+2)x2+(k-1)x-a是偶函数,则y=|f(x)|的递减区间是(-3,-1),(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知正三棱锥的侧棱长为2,底面周长为9.
(1)求这个正三棱锥的体积;
(2)求这个正三棱锥的外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)是定义在(-1,1)上的奇函数,当x∈[0,1)时,$f(x)=\frac{-ax-b}{1+x}$,且$f(\frac{1}{2})=\frac{1}{3}$.
(1)求a,b的值及f(x)的解析式;
(2)判断并证明函数f(x)在(-1,1)上的单调性.
(3)若f(x-1)+f(x)>0,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列关于向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$的命题中,正确的有(4).
(1)$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow c$;
(2)$({\overrightarrow a•\overrightarrow b})•\overrightarrow c=\overrightarrow a•({\overrightarrow b•\overrightarrow c})$;
(3)$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}|×|{\overrightarrow b}|$
(4)$|{\overrightarrow a+\overrightarrow b}|^2={({\overrightarrow a+\overrightarrow b})^2}$;
(5)若$\overrightarrow a•\overrightarrow b=0$,则$\overrightarrow a,\overrightarrow b$中至少一个为$\overrightarrow 0$
(6)若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$;
(7)若$\overrightarrow a⊥\overrightarrow b,\overrightarrow b⊥\overrightarrow c$,则$\overrightarrow a⊥\overrightarrow c$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)的图象过点(0,4),且关于x的方程f(x)=2x有两实数根1和4,
(1)求f(x)的解析式;
(2)若函数h(x)=f(x)-(2t-3)x(t∈R)在区间x∈[0,1]上的最小值是$\frac{7}{2}$,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,图形ABCST中AB=BC=100,AB垂直于BC,O为AC的中点,AT=SC=50,弧$\widehat{TS}$以O为圆心,OT为半径,P为弧$\widehat{TS}$上任一点,过P作矩形PHBQ,求矩形PHBQ的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,且满足a2+a4=-22,a1+a4+a7=-21,则使Sn达到最小值的n是(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案