精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=lnx-$\frac{{x}^{2}}{2}$,g(x)=$\frac{{x}^{2}}{2}$-x.
(I)求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设h(x)=af(x)+(a+1)g(x),其中0<a≤1,证明:函数h(x)仅有一个零点.

分析 (Ⅰ)利用函数的导数求出切线的斜率,将x=1代入,求得y=$-\frac{1}{2}$,(Ⅱ)利用导数符号判断函数的单调区间,(Ⅲ),先将h(x)写出,进行化简,求得h(x)在定义域内单调递增,利用零点定理,判断h(x)有一个零点.

解答 解:(Ⅰ)函数f(x)=lnx-$\frac{{x}^{2}}{2}$,(x>0)f′(x)=$\frac{1}{x}$-x,
在x=1处的切线方程的斜率为k=f′(1)=0,
∴求曲线y=f(x)在x=1处的切线方程y=$-\frac{1}{2}$,
(Ⅱ)f′(x)=$\frac{1}{x}$-x,令f′(x)=0,
得x=1,
当0<x<1时,f′(x)>0,f(x)单调递增,
x>1时,f′(x)<0,f(x)单调递减,
f(x)的单调递增区间为[1,+∞),
f(x)的单调递减区间为(0,1);
(Ⅲ)证明:h(x)=af(x)+(a+1)g(x)=$\frac{{x}^{2}}{2}$+alnx-(a+1)x,(x>0)
∴h′(x)=x-(a+1)+$\frac{a}{x}$≥2$\sqrt{a}$-(a+1),
当且仅当x=$\frac{a}{x}$,x=$\sqrt{a}$,
设g(x)=2$\sqrt{a}$-(a+1)
g′(x)=$\frac{1}{\sqrt{a}}-1$,0<a≤1,g′(x)>0,g(x)单调递增,当a=1取最大值,最大值为0,
∴h′(x)>0,
∴h(x)单调递增,
h(a)=$-\frac{{a}^{2}}{2}-a+alna$0<a≤1
∴h(a)<0,
当x>1时,h(x)>0,利用零点定理,
∴函数h(x)仅有一个零点.

点评 本题考查根据导数求函数的切线方程和单调区间及判断函数的零点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,四棱锥P-ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N-PAC与四棱锥P-ABCD的体积比为(  )
A.1:2B.1:3C.1:6D.1:8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直角梯形PBCD中,PB∥DC,DC⊥BC,PB=BC=2CD=2,点A是PB的中点,E是BC的中点,现沿AD将平面PAD折起,使得PA⊥AB;
(1)求异面直线PC与AE所成角的大小;
(2)求四棱锥P-AECD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有8个面围成的几何体,每一个面都是正三角形,并且有四个顶点A,B,C,D在同一个平面内,ABCD是边长为30cm的正方形.
(1)想象几何体的结构,并画出它的三视图和直观图;
(2)求出此积几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等比数列{an}中,设Sn为其前n项和,若a1a3=4,且S3=-3,则S4=(  )
A.31B.-23C.-5或$\frac{5}{2}$D.5或-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=2x+y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.y=10x在(1,10)处切线的斜率为10ln10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别为a、b、c,且2bsinB=(2a-c)sinA+(2c-a)sinC,acosA=bcosB,求∠A,∠B,∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列命题
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=±$\overrightarrow{b}$
②若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$
③若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案