精英家教网 > 高中数学 > 题目详情
9.如图,在直角梯形PBCD中,PB∥DC,DC⊥BC,PB=BC=2CD=2,点A是PB的中点,E是BC的中点,现沿AD将平面PAD折起,使得PA⊥AB;
(1)求异面直线PC与AE所成角的大小;
(2)求四棱锥P-AECD的体积.

分析 (1)取AD中点F,连结PF,CF,则AE∥CF,即∠PCF为异面直线PC与AE所成角.由PA⊥AB,PA⊥AD得出PA⊥平面ABCD,利用勾股定理求出△PCF的三条边,利用余弦定理求出∠PCF;
(2)四棱锥P-AECD的底面为直角梯形,高为PA,代入公式计算即可.

解答 解:(1)取AD中点F,连结PF,CF,
∵AB$\stackrel{∥}{=}CD$,DC⊥BC,
∴四边形ABCD是矩形,
∵E,F是BC,AD的中点,
∴AF$\stackrel{∥}{=}$CE,即四边形AECF是平行四边形,
∴AE∥CF,
∴∠PCF为异面直线PC与AE所成角.
∵PA⊥AB,PA⊥AD,AB∩AD=A,
∴PA⊥平面ABCD.
∴PF=$\sqrt{P{A}^{2}+A{F}^{2}}$=$\sqrt{2}$,
∵AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{5}$,∴PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=$\sqrt{6}$.
又∵CF=$\sqrt{C{D}^{2}+D{F}^{2}}$=$\sqrt{2}$,
∴cos∠PCF=$\frac{P{C}^{2}+C{F}^{2}-P{F}^{2}}{2PC•CF}$=$\frac{6+2-2}{2\sqrt{12}}$=$\frac{\sqrt{3}}{2}$.
∴∠PCF=$\frac{π}{6}$,即异面直线PC与AE所成角的大小为$\frac{π}{6}$.
(2)VP-AECD=$\frac{1}{3}{S}_{梯形AECD}•PA$=$\frac{1}{3}×\frac{1}{2}×(1+2)×1×1=\frac{1}{2}$.

点评 本题考查了空间角的计算,棱锥的体积计算,作出异面直线所成的角是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为2x-y=0,则它的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0.
(1)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若AB=CB=1,${A_1}C=\frac{{\sqrt{6}}}{2}$,求三棱锥A-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在[-2,2]上的奇函数,当x∈[-2,0)时,f(x)=-ax2-ln(-x)+1,a∈R.
(1)当$a=\frac{1}{2}$时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对于(0,2]上任意的x,都有|f(x)+x|≥1成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知:∠ABC=45°,AB=2,$BC=2\sqrt{2}$,SB=SC,直线SA与平面ABCD所成角为45°,O为BC的中点.
(1)证明:SA⊥BC
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\int\begin{array}{l}m\\ 1\end{array}$(2x-1)dx=6,则二项式(1-2x)3m的展开式各项系数和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-$\frac{{x}^{2}}{2}$,g(x)=$\frac{{x}^{2}}{2}$-x.
(I)求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设h(x)=af(x)+(a+1)g(x),其中0<a≤1,证明:函数h(x)仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱锥P-ABCD中,PA垂直于直角梯形ABCD所在的平面,BA⊥AD,BC∥AD,M是PC的中点,且AB=AD=AP=2,BC=4.
(1)求证:DM∥平面PAB;
(2)求三棱锥M-PBD的体积.

查看答案和解析>>

同步练习册答案