精英家教网 > 高中数学 > 题目详情
17.(1+2x)6展开式中x2项的系数为(  )
A.72B.60C.12D.6

分析 根据所给的二项式写出通项,要求自变量的二次方的系数,只要使得指数等于2,看出式子中的系数的表示式,得到结果.

解答 解:∵(1+2x)6的通项式式是C6r(2x)r=Cr52rxr
当r=2时,得到含有x2的项,
∴它的系数是C6222=60,
故选:B.

点评 本题考查二项式定理的应用,本题解题的关键是写出二项式的通项,这是解题的最主要环节,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设等差数列{an}的前n项和为Sn,公差为d,已知S2,S3+1,S4成等差数列.
(1)求d的值;
(2)令bn=$\frac{{S}_{n}}{n}$,记{bn}的前n项和为Tn,若$\frac{{S}_{n}}{{T}_{n}}$=2,求a1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=$\frac{2x+k}{x-2}$在(3,+∞)上单调递增,则实数k的取值范围是(-∞,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=2cosx(cosx+sinx)+a的最大值为$\sqrt{2}$.
(1)求常数a的值和f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域;
(3)设函数h(x)=f(ωx-$\frac{π}{8}$)(ω>0),且h(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]上为增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:x-my+3=0和圆C:x2+y2-6x+5=0
(1)当直线l与圆C相切时,求实数m的值;
(2)当直线l与圆C相交,且所得弦长为$\frac{{2\sqrt{10}}}{5}$时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=(a+1)lnx+$\frac{f'(1)-1}{3}$x2(a<-1)对任意的x1、x2>0,恒有|f(x1)-f(x2)|≥4|x1-x2|,则a的取值范围为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设两个向量$\overrightarrow{a}$=(λ+2,λ2-cos2θ),$\overrightarrow{b}$=(μ,$\frac{μ}{2}$+sinθ),其中λ,μ,θ∈R,若$\overrightarrow{a}$=2$\overrightarrow{b}$,则$\frac{λ}{μ}$的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在几何图形ABCDEF中,AB∥CD,AD=DC=CB=CF=1,∠ABC=60°,四边形ACEF为矩形,平面ACEF⊥平面ABCD.
(1)求证:平面FBC⊥平面ACEF;
(2)在AB上确定一点P,使得平面FCP∥平面AED;
(3)求三棱锥E-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某微信群共有60人(不包括群主),春节期间,群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个).红包被一抢而空.据统计,60个红包中钱数(单位:元)分配如表:
分组[0,1)[1,2)[2,3)[3,4)[4,5)
频数31524126
(Ⅰ)在表中作出这些数据的频率分布直方图;
(Ⅱ)估计红包中钱数的平均数及中位数;
(Ⅲ)若该群中成员甲、乙二人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙二人至少有一人被选中的概率.

查看答案和解析>>

同步练习册答案