| A. | $\frac{5}{6}$ | B. | $\frac{5}{4}$ | C. | $\frac{5}{2}$ | D. | $\frac{5}{3}$ |
分析 利用已知及三角函数恒等变换的应用化简可得f(x)=cos(πx+φ),又图象过点(0,$\frac{\sqrt{3}}{2}$),结合范围0≤φ<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,由图象可得:πx0+$\frac{π}{6}$=2-$\frac{π}{6}$,即可解得x0的值.
解答 解:∵f(x)=2cos(πx)•cos2$\frac{φ}{2}$-sin(πx)•sinφ-cos(πx)
=cos(πx)•(1+cosφ)-sin(πx)•sinφ-cos(πx)
=cos(πx)•cosφ-sin(πx)•sinφ
=cos(πx+φ),
又由函数图象可知,图象过点(0,$\frac{\sqrt{3}}{2}$),
∴$\frac{\sqrt{3}}{2}$=cosφ,
∴结合范围0≤φ<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,
∴由图象可得:cos(πx0+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,可得:πx0+$\frac{π}{6}$=2-$\frac{π}{6}$,解得:x0=$\frac{5}{3}$.
故选:D.
点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,由y=Asin(ωx+φ)的部分图象确定其解析式,考查了计算能力和数形结合思想的应用,其中求φ的值是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$-1 | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sinx | B. | y=cosx | C. | y=-sinx | D. | y=-cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 682 | B. | 683 | C. | 692 | D. | 693 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com