精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)={log_{\sqrt{2}}}$x,且数列{f(an)}是首项为2,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)设bn=an•f(an),求数列{bn}的前n项和Tn

分析 (1)由函数$f(x)={log_{\sqrt{2}}}$x,且数列{f(an)}是首项为2,公差为2的等差数列,可得f(an)=2n=$lo{g}_{\sqrt{2}}{a}_{n}$,an=2n,即可证明.
(2)由(1)可得:an=2n.可得:bn=an•f(an)=n×2n+1,再利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 (1)证明:∵函数$f(x)={log_{\sqrt{2}}}$x,且数列{f(an)}是首项为2,公差为2的等差数列,
∴f(an)=2+2(n-1)=2n=$lo{g}_{\sqrt{2}}{a}_{n}$,∴an=$(\sqrt{2})^{2n}$=2n=2×2n-1
∴数列{an}是等比数列,首项与公比都为2.
(2)解:由(1)可得:an=2n
bn=an•f(an)=2n$•lo{g}_{\sqrt{2}}{2}^{n}$=2n×2n=n×2n+1
∴数列{bn}的前n项和Tn=22+2×23+…+n×2n+1
2Tn=23+2×24+…+(n-1)×2n+1+n×2n+2
∴-Tn=22+23+…+2n+1-n×2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n×2n+2=(1-n)×2n+2-4,
∴Tn=(n-1)×2n+2+4.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,已知a2=4,公比q=2,数列{bn}满足bn=$\frac{1}{2}$an,求证:数列{bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s2,求P(3.8<X<13.4)
附:①回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),则P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5).根据收集到的数据可知$\overline{x}$=20,由最小二乘法求得回归直线方程为$\widehat{y}$=0.6x+48,则y1+y2+y3+y4+y5=(  )
A.60B.120C.150D.300

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,使用时需要用清水清洗干净,如表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的统计表:
x12345
y5854392910
(Ⅰ)在如图的坐标系中,描出散点图,并判断变量x与y的相关性;
(Ⅱ)若用解析式$\widehat{y}$=cx2+d作为蔬菜农药残量$\widehat{y}$与用水量x的回归方程,令ω=x2,计算平均值$\overline{ω}$和$\overline{y}$,完成如下表格,求出$\widehat{y}$与x回归方程.(c,d精确到0.01)
ω1491625
y5854392910
ωi-$\overline{ω}$
yi-$\overline{y}$
(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要多少千克的清水洗一千克蔬菜?(精确到0.1,参考数据$\sqrt{5}$≈2.236).
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中系数计算公式分别为:
$\widehat{b}$=$\frac{\sum_{i-1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,抛物线W:y2=4x与圆C:(x-1)2+y2=25交于A,B两点,点P为劣弧$\widehat{AB}$上不同于A,B的一个动点,与x轴平行的直线PQ交抛物线W于点Q,则△PQC的周长的取值范围是(  )
A.(10,14)B.(12,14)C.(10,12)D.(9,11)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:
气温(℃)181310-1
用电量(度)24m-263866+n
由表中数据得到线性回归方程y=nx+m,若样本点的中心为($\overline{x}$,40),则当气温降低2℃时,用电量(  )
A.增加4度B.降低4度C.增加120度D.降低120度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究.他们分别记录了5月15日至5月19日的每天昼夜温差与实验室每天200颗种子浸泡后的发芽数.得到如下资料:
日    期5月15日5月16日5月17日5月18日5月19日
温差x(°C)151481716
发芽数y(颗)5046326052
(I)从5月15日至5月19日中任选3天.记发芽的种子数分别为a,b,c.求事件“a,b,c均小于50”的概率.
(Ⅱ)请根据5月15日至5月17日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过5颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?可靠.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在△ABC中,角A,B,C的对边分别为a,b,c,若A=120°,a=3$\sqrt{3}$
(1)求bc的最大值;
(2)若D为BC边上靠近点B的一个三等分点,求AD的取值范围.

查看答案和解析>>

同步练习册答案