精英家教网 > 高中数学 > 题目详情
17.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5).根据收集到的数据可知$\overline{x}$=20,由最小二乘法求得回归直线方程为$\widehat{y}$=0.6x+48,则y1+y2+y3+y4+y5=(  )
A.60B.120C.150D.300

分析 根据回归方程求出$\overline{y}$即可得出答案.

解答 解:将$\overline{x}=20$代入回归方程得$\overline{y}$=0.6×20+48=60.
∴y1+y2+y3+y4+y5=5$\overline{y}$=300.
故选D.

点评 本题考查了线性回归方程的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-x2+2x+3>0,x∈R},B={x|$\frac{x-1}{{x}^{2}+x+1}$<0,x∈R},求A∩B,∁UA∪B,A∩∁UB,∁U(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用斜二测法画出长为4,高为3的矩形的直观图,则其直观图面积为(  )
A.3$\sqrt{2}$B.6C.6$\sqrt{2}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面几何中有正确的结论,已知一个正三角形的内切圆面积为S1,外接圆面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$,类比上述结论推理,在空间中,已知一个正四面体的内切球体积为V1,外接球体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx+c(a≠0)的图象过点(-1,0).是否存在常数a,b,c,使不等式x≤f(x)≤$\frac{1+x^2}{2}$,对?x∈R都成立?若存在,求出a,b,c的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ax2+bx+c(a≠0,a,b,c∈R),且方程f(x)=x无实数根.给出下列命题:
①若a=1,则不等式f(f(x))>x对一切实数x都成立;
②若a=-1,则存在实数x0,使得f(f(x0))>x0成立;
③若a+b+c=0,则f(f(x))<x对一切实数x都成立;
④方程f(f(x))=x一定无实数根.
其中正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={log_{\sqrt{2}}}$x,且数列{f(an)}是首项为2,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)设bn=an•f(an),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}各项均为正数,且a1=1,an+12-an+1=an2+an
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{a_n^2}$,数列{bn}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD,底面ABCD是∠ABC=60°的菱形,侧面PAD是边长为2的正三角形,且与底面ABCD垂直,M为PC的中点.
(I)求证:PC⊥AD;
(Ⅱ)求直线DM与平面PAC所成的角的正弦值.

查看答案和解析>>

同步练习册答案