精英家教网 > 高中数学 > 题目详情
7.如图,四棱锥P-ABCD,底面ABCD是∠ABC=60°的菱形,侧面PAD是边长为2的正三角形,且与底面ABCD垂直,M为PC的中点.
(I)求证:PC⊥AD;
(Ⅱ)求直线DM与平面PAC所成的角的正弦值.

分析 (I)取AD中点 O,连接OP,OC,AC,证明OC⊥AD,OP⊥AD.推出AD⊥平面POC,即可在,PC⊥AD.
(II)证明PO⊥平面ABCD.说明PO为三棱锥P-ACD的高.求出△PAC的面积,设点D到平面 PAC的距离为h,由VD-PAC=VP-ACD,求出点D到平面PAC的距离,然后求解直线DM与平面PAC所成的角的正弦值.

解答 解:(I)证明:取AD中点 O,连接OP,OC,AC,
由题意可知△PAD,△ACD均为正三角形.
所以 OC⊥AD,OP⊥AD.
又 OC∩OP=O,OC?平面POC,OP?平面 POC,
所以 AD⊥平面POC,
又 PC?平面POC,
所以 PC⊥AD.…(4分)
(II)由(1)可知 PO⊥AD,
又平面 PAD⊥平面ABCD,平面PAD∩平面 ABCD=AD,PO?平面PAD,
所以 PO⊥平面ABCD.即 PO为三棱锥P-ACD的高.
在Rt△P OC中,${P}{O}={O}C=\sqrt{3}$,${P}C=\sqrt{6}$,
在△P AC中,P A=AC=2,${P}C=\sqrt{6}$,
边 PC上的高${A}{M}=\sqrt{{P}{{A}^2}-{P}{{M}^2}}=\frac{{\sqrt{10}}}{2}$,
所以△PAC的面积${S_{△{P}{A}C}}=\frac{1}{2}{P}C•{A}{M}=\frac{1}{2}×\sqrt{6}×\frac{{\sqrt{10}}}{2}=\frac{{\sqrt{15}}}{2}$.
设点D到平面 PAC的距离为h,由VD-PAC=VP-ACD得,
$\frac{1}{3}{S_{△{P}{A}C}}•h=\frac{1}{3}{S_{△{A}CD}}•{P}{O}$,又${S_{△{A}CD}}=\frac{1}{2}×2\sqrt{3}=\sqrt{3}$,
所以$\frac{1}{3}×\frac{{\sqrt{15}}}{2}×h=\frac{1}{3}×\sqrt{3}×\sqrt{3}$,解得$h=\frac{{2\sqrt{15}}}{5}$.
故点D到平面PAC的距离为$\frac{{2\sqrt{15}}}{5}$.         …(10分)
设直线DM与平面PAC所成的角为θ
则$sinθ=\frac{h}{DM}=\frac{{\frac{{2\sqrt{15}}}{5}}}{{\frac{{\sqrt{10}}}{2}}}=\frac{{2\sqrt{6}}}{5}$,
所以直线DM与平面PAC所成的角的正弦值为$\frac{{2\sqrt{6}}}{5}$.…(12分).

点评 本题考查直线与平面市场价的求法,直线与平面垂直的判定定理的应用,考查转化思想以及空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5).根据收集到的数据可知$\overline{x}$=20,由最小二乘法求得回归直线方程为$\widehat{y}$=0.6x+48,则y1+y2+y3+y4+y5=(  )
A.60B.120C.150D.300

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究.他们分别记录了5月15日至5月19日的每天昼夜温差与实验室每天200颗种子浸泡后的发芽数.得到如下资料:
日    期5月15日5月16日5月17日5月18日5月19日
温差x(°C)151481716
发芽数y(颗)5046326052
(I)从5月15日至5月19日中任选3天.记发芽的种子数分别为a,b,c.求事件“a,b,c均小于50”的概率.
(Ⅱ)请根据5月15日至5月17日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过5颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?可靠.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn满足Sn=$\frac{3}{2}$an-(-1)n-2,(n∈N*).
(1)证明:{an-(-1)n}为等比数列,并求出{an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,证明:Tn<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(-3,2,5),$\overrightarrow{b}$=(1,x,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知各项均为正数的数列{an}满足an+1=4an+3,a1=1.
(1)设bn=log2(an+1),求证:数列{bn}为等差数列;
(2)设cn=$\sqrt{2({a}_{n}+1)}$•bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在△ABC中,角A,B,C的对边分别为a,b,c,若A=120°,a=3$\sqrt{3}$
(1)求bc的最大值;
(2)若D为BC边上靠近点B的一个三等分点,求AD的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足a4-a2=2,且a1,a3,a7成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{{a}_{n}}^{2}-1}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)的定义域为[-2,2],则函数y=f(2x)•ln(2x+1)的定义域为$(-\frac{1}{2},1]$.

查看答案和解析>>

同步练习册答案