分析 (Ⅰ)公差为d由已知可得:$\left\{\begin{array}{l}{2d=2}\\{{a}_{3}^{2}={a}_{1}{a}_{7}}\end{array}\right.$即$\left\{\begin{array}{l}{d=1}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,解得即可.
(Ⅱ)根据裂项求和法即可求出.
解答 解:(Ⅰ)设公差为d
由已知可得:$\left\{\begin{array}{l}{2d=2}\\{{a}_{3}^{2}={a}_{1}{a}_{7}}\end{array}\right.$即$\left\{\begin{array}{l}{d=1}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$
解得:a1=2,d=1
所以an=n+1
(Ⅱ)bn=$\frac{1}{{{a}_{n}}^{2}-1}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)
所以Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$
点评 本题主要考查等差数列等比数列概念、通项等基础知识,考查运算求解能力,考查化归与转化思想
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a<1,b<$\frac{1}{2}$,则a>b | B. | 若a<1,b<$\frac{1}{2}$,则a<b | ||
| C. | 若a>1,b>$\frac{1}{2}$,则a>b | D. | 若a>1,b>$\frac{1}{2}$,则a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是真命题,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥x | B. | p是真命题,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0 | ||
| C. | p是假命题,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥x | D. | p是假命题,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<1} | B. | {x|1≤x≤2} | C. | {x|-1≤x<1} | D. | {x|1≤x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | [-1,0) | C. | [-2,-1] | D. | [-2,-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com