【题目】已知D是以点A(4,1),B(﹣1,﹣6),C(﹣2,3)为顶点的三角形区域(包括边界及内部).
(1)写出表示区域D的不等式组;
(2)设点B(﹣1,﹣6)、C(﹣2,3)在直线4x﹣3y﹣a=0的异侧,求a的取值范围;
(3)若目标函数z=kx+y(k<0)的最小值为﹣k﹣6,求k的取值范围.
【答案】
(1)解:A(4,1),B(﹣1,﹣6),C(﹣2,3)为顶点,
则直线方程AB: 得7x﹣5y﹣23=0,
AC: ,即x+3y﹣7=0,
BC: ,即9x+y+15=0,
则对应的不等式组为
(2)解:∵点B(﹣1,﹣6)、C(﹣2,3)在直线4x﹣3y﹣a=0的异侧,
∴将点的坐标分别代入得(14﹣a)(﹣17﹣a)<0,
即(a﹣14)(a+17)<0,得﹣17<a<14
(3)∵z=kx+y(k<0)的最小值为﹣k﹣6,这也是将点B(﹣1,﹣6)的坐标代入的结果,
∴B是目标函数的最优解,
∵y=﹣kx+z,∴0<﹣k<kAB或kBC<﹣k<0,(∵k<0,∴这种情况不存在)
∵kAB= ,∴0<﹣k< ,即﹣ <k<0
【解析】(1)先分别求出AB,BC,AB的方程,结合二元一次不等式组表示平面区域进行表示,(2)根据点与直线的位置关系转化为二元一次不等式关系进行求解即可.(3)根据线性规划的知识建立直线斜率关系进行求解即可.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 满足3an﹣2Sn﹣1=0.
(1)求数列{an}的通项公式;
(2)bn= ,数列{bn}的前n项和为Tn , 求f(n)= (n∈N+)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的长轴长为6,且椭圆与圆: 的公共弦长为.
(1)求椭圆的方程.
(2)过点作斜率为的直线与椭圆交于两点, ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:若x>0,则函数y=x+ 的最小值为1,命题q:若x>1,则x2+2x﹣3>0,则下列命题是真命题的是( )
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥ABC﹣A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1⊥底面ABC,AA1= ,P、Q分别是AB、AC上的点,且PQ∥BC.
(1)若平面A1PQ与平面A1B1C1相交于直线l,求证:l∥B1C1;
(2)当平面A1PQ⊥平面PQC1B1时,确定点P的位置并说明理由.S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①已知a,b,m都是正数,并且a<b,则 > ;
②在△ABC中,角A,B,C的对边分别为a,b,c,若∠A=60°,a=7,b=8,则三角形有一解;
③若函数f(x)= ,则f( )+f( )+f( )+…+f( )=5;
④在等比数列{an}中,a1+a2+…+an= (其中n∈N* , q为公比);
⑤如图,在正方体ABCD﹣A1B1C1D1中,点M,N分别是CD,CC1的中点,则异面直线A1M与DN所成角的大小是90°.
其中真命题有(写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com