【题目】(本题满分12分)如图, 是圆的直径,点是圆上异于的点, 垂直于圆所在的平面,且.
(Ⅰ)若为线段的中点,求证平面;
(Ⅱ)求三棱锥体积的最大值;
(Ⅲ)若,点在线段上,求的最小值.
【答案】(Ⅰ)详见解析;(Ⅱ) ;(Ⅲ).
【解析】解法一:(Ⅰ)在中,因为, 为的中点,
所以.又垂直于圆所在的平面,所以.
因为,所以平面.
(Ⅱ)因为点在圆上,
所以当时, 到的距离最大,且最大值为.
又,所以面积的最大值为.
又因为三棱锥的高,故三棱锥体积的最大值为.
(Ⅲ)在中, , ,所以.
同理,所以.
在三棱锥中,将侧面绕旋转至平面,使之与平面共面,如图所示.
当, , 共线时, 取得最小值.
又因为, ,所以垂直平分,
即为中点.从而,
亦即的最小值为.
解法二:(Ⅰ)、(Ⅱ)同解法一.
(Ⅲ)在中, , ,
所以, .同理.
所以,所以.
在三棱锥中,将侧面绕旋转至平面,使之与平面共面,如图所示.
当, , 共线时, 取得最小值.
所以在中,由余弦定理得:
.
从而.
所以的最小值为.
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)若函数f(x)在处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有编号为的10个零件,测量其直径(单位:cm),得到下面数据:
编号 | ||||||||||
直径 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直径在区间内的零件为一等品.
(1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率.
(2)从一等品零件中,随机抽取2个;
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)在x=-2处有极值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是自然对数的底数,函数与的定义域都是.
(1)求函数在点处的切线方程;
(2)判断函数零点个数;
(3)用表示的最小值,设,,若函数在上为增函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列、满足 (N*),则称为数列的“偏差数列”.
(1)若为常数列,且为的“偏差数列”,试判断是否一定为等差数列,并说明理由;
(2)若无穷数列是各项均为正整数的等比数列,且,为数列的“偏差数列”,求的值;
(3)设,为数列的“偏差数列”,,且,若对任意恒成立,求实数M的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.
(1)若点的极坐标为,求的值;
(2)求曲线的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com