精英家教网 > 高中数学 > 题目详情

【题目】(本题满分12分)如图, 是圆的直径,点是圆上异于的点, 垂直于圆所在的平面,且

)若为线段的中点,求证平面

)求三棱锥体积的最大值;

)若,点在线段上,求的最小值.

【答案】)详见解析;(;(

【解析】解法一:()在中,因为的中点,

所以.又垂直于圆所在的平面,所以

因为,所以平面

)因为点在圆上,

所以当时, 的距离最大,且最大值为

,所以面积的最大值为

又因为三棱锥的高,故三棱锥体积的最大值为

)在中, ,所以

同理,所以

在三棱锥中,将侧面旋转至平面,使之与平面共面,如图所示.

共线时, 取得最小值.

又因为,所以垂直平分

中点.从而

亦即的最小值为

解法二:()、()同解法一.

)在中,

所以.同理

所以,所以

在三棱锥中,将侧面旋转至平面,使之与平面共面,如图所示.

共线时, 取得最小值.

所以在中,由余弦定理得:

从而

所以的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数fx)在处有极值,求函数fx)的最大值;

2)是否存在实数b,使得关于x的不等式上恒成立?若存在,求出b的取值范围;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号为10个零件,测量其直径(单位:cm),得到下面数据:

编号

直径

1.51

1.49

1.49

1.51

1.49

1.51

1.47

1.46

1.53

1.47

其中直径在区间内的零件为一等品.

1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率.

2)从一等品零件中,随机抽取2个;

①用零件的编号列出所有可能的抽取结果;

②求这2个零件直径相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)x=-2处有极值.

(1)f(x)的解析式.

(2)y=f(x)[-3,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是自然对数的底数,函数的定义域都是.

(1)求函数在点处的切线方程;

(2)判断函数零点个数;

(3)用表示的最小值,设,若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足 (N*),则称为数列的“偏差数列”.

(1)若为常数列,且为的“偏差数列”,试判断是否一定为等差数列,并说明理由;

(2)若无穷数列是各项均为正整数的等比数列,且为数列的“偏差数列”,求的值;

(3)设为数列的“偏差数列”,,若对任意恒成立,求实数M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

(2)从圆C外一点P(x1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

同步练习册答案